首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11994篇
  免费   995篇
  国内免费   1088篇
测绘学   2735篇
大气科学   956篇
地球物理   1491篇
地质学   1786篇
海洋学   1101篇
天文学   48篇
综合类   1029篇
自然地理   4931篇
  2024年   33篇
  2023年   104篇
  2022年   530篇
  2021年   590篇
  2020年   571篇
  2019年   670篇
  2018年   504篇
  2017年   654篇
  2016年   630篇
  2015年   665篇
  2014年   659篇
  2013年   991篇
  2012年   767篇
  2011年   723篇
  2010年   535篇
  2009年   589篇
  2008年   582篇
  2007年   662篇
  2006年   629篇
  2005年   513篇
  2004年   503篇
  2003年   380篇
  2002年   326篇
  2001年   224篇
  2000年   208篇
  1999年   146篇
  1998年   119篇
  1997年   102篇
  1996年   76篇
  1995年   71篇
  1994年   65篇
  1993年   41篇
  1992年   51篇
  1991年   26篇
  1990年   25篇
  1989年   15篇
  1988年   15篇
  1987年   14篇
  1986年   13篇
  1985年   24篇
  1984年   13篇
  1983年   9篇
  1982年   2篇
  1981年   4篇
  1980年   3篇
  1971年   1篇
排序方式: 共有10000条查询结果,搜索用时 140 毫秒
1.
Water quality is often highly variable both in space and time, which poses challenges for modelling the more extreme concentrations. This study developed an alternative approach to predicting water quality quantiles at individual locations. We focused on river water quality data that were collected over 25 years, at 102 catchments across the State of Victoria, Australia. We analysed and modelled spatial patterns of the 10th, 25th, 50th, 75th and 90th percentiles of the concentrations of sediments, nutrients and salt, with six common constituents: total suspended solids (TSS), total phosphorus (TP), filterable reactive phosphorus (FRP), total Kjeldahl nitrogen (TKN), nitrate-nitrite (NOx), and electrical conductivity (EC). To predict the spatial variation of each quantile for each constituent, we developed statistical regression models and exhaustively searched through 50 catchment characteristics to identify the best set of predictors for that quantile. The models predict the spatial variation in individual quantiles of TSS, TKN and EC well (66%–96% spatial variation explained), while those for TP, FRP and NOx have lower performance (37%–73% spatial variation explained). The most common factors that influence the spatial variations of the different constituents and quantiles are: annual temperature, percentage of cropping land area in catchment and channel slope. The statistical models developed can be used to predict how low- and high-concentration quantiles change with landscape characteristics, and thus provide a useful tool for catchment managers to inform planning and policy making with changing climate and land use conditions.  相似文献   
2.
3.
ABSTRACT

Land-Use Mix (LUM) refers to the strategy of integrating complementary functions within a building or area. While LUM has become a dominant approach in urban planning, its actual benefits and vision for spatial planning remain unclear. To clarify this issue, this study discerns the spatial features of land-use patterns depending on the compatibilities among land-use categories. Accordingly, this study introduces three LUM measures – adjacency, intensity, and proximity – to identify differences in the spatial distribution of land-use categories. Based on these measures, a land-use allocation model is developed to specify spatial patterns satisfying the given compatibilities. This model is tested by applying the concept of the neighborhood unit on a case study of normative land-use patterns subject to specified compatibilities. The results describe spatial features of four compatibility sets, including a set exhibiting a compatibility conflict between the same land-use pair and LUM measures when, for example, a given land-use pair is compatible in terms of intensity but incompatible in terms of proximity. Understanding the spatial features of a normative land-use pattern that satisfies various possible compatibilities will facilitate the incorporation of the LUM approach into local planning guidance and zoning ordinances.  相似文献   
4.
The structure, functioning and hydrodynamic properties of aquifers can be determined from an analysis of the spatial variability of baseflow in the streams with which they are associated. Such analyses are based on simple low‐cost measurements. Through interpreting the hydrological profiles (Q = f(A)) it is possible to locate the aquifer(s) linked to the stream network and to determine the type of interrelated flow, i.e. whether the stream drains or feeds the aquifer. Using an analytical solution developed for situations with a positive linear relationship, i.e. where the baseflow increases linearly with increasing catchment size, it is also possible to estimate the permeability of the aquifer(s) concerned at catchment scale. Applied to the hard‐rock aquifers of the Oman ophiolite, this method shows that the ‘gabbro’ aquifer is more permeable than the ‘peridotite’ aquifer. As a consequence the streams drain the peridotites and ‘leak’ into the gabbro. The hydrological profiles within the peridotite are linear and positive, and indicate homogeneity in the hydrodynamic properties of these formations at the kilometre scale. The permeability of the peridotite is estimated at 5 · 10?7 to 5 · 10?8 m/s. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
5.
Stress wave attenuation across fractured rock masses is a great concern of underground structure safety. When the wave amplitude is large, fractures experience nonlinear deformation during the wave propagation. This paper presents a study on normal transmission of P‐wave across parallel fractures with nonlinear deformational behaviour (static Barton–Bandis model). The results show that the magnitude of transmission coefficient is a function of incident wave amplitude, nondimensional fracture spacing and number of fractures. Two important indices of nondimensional fracture spacing are identified, and they divide the area of nondimensional fracture spacing into three parts (individual fracture area, transition area and small spacing area). In the different areas, the magnitude of transmission coefficient has different trends with nondimensional fracture spacing and number of fractures. In addition, the study reveals that under some circumstances, the magnitude of transmission coefficient increases with increasing number of fractures, and is larger than 1. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
6.
A synthesis of Holocene pollen records from the Tibetan Plateau shows the history of vegetation and climatic changes during the Holocene. Palynological evidences from 24 cores/sections have been compiled and show that the vegetation shifted from subalpine/alpine conifer forest to subalpine/alpine evergreen sclerophyllous forest in the southeastern part of the plateau; from alpine steppe to alpine desert in the central, western and northern part; and from alpine meadow to alpine steppe in the eastern and southern plateau regions during the Holocene. These records show that increases in precipitation began about 9 ka from the southeast, and a wide ranging level of increased humidity developed over the entire of the plateau around 8-7 ka, followed by aridity from 6 ka and a continuous drying over the plateau after 4-3 ka. The changes in Holocene climates of the plateau can be interpreted qualitatively as a response to orbital forcing and its secondary effects on the Indian Monsoon which expanded northwards  相似文献   
7.
空间数据仓库的认知过程   总被引:3,自引:3,他引:0  
从理论上探讨了空间数据仓库的认知过程.主要是十一个层次的世界模型通过十个算子转换的过程,对十一个层次世界及十个算子概念进行了较详细地讨论,并用代数系统对其进行了定义。  相似文献   
8.
1 INTRODUCTIONGlobal change research involves much geo-objectsand geo-process, such as climate and environmentalchange, substance and energy cycling, land-use/land-cover change (LUCC), interactivity between human and nature, etc.. So it need cooperation frommany research communities including international research programs groups such as IGBP (InternationalGeosphere-Biosphere Programme IPCC (Intergovemmental Panel on Climate Change), IHDP (InternationalHuman Dimension Program o…  相似文献   
9.
Urban heat environmental quality(UHEQ) is affected by the interacting of weather condition and underlying surface framework of urban area .In the last two decades,many researchers from domestic and overseas have studied many problems at the aspect of urban heat environment such as urban heat islands ,urban air temperature and their rela-tion with urban land cover,city population,air pollution etc,In the recent years,Hangzhou,acting as a center city of Zhejiang Province in China,its urbanization quantum and quantity have both changed greatly,in particular ,representing as business affairs building,resident real property and all kins of specialty market having arisen in built-up zone,Based on Landsat TM images data in 1991 and 1999,urban underlying surface temperature value and Normalized Difference Vegetation Index (NDVI) were calculated using image interpreting and supervised classification technique by remote sensing software ERDAS image 8.4,The relation model between urban underlying surface temperature (UUST )and urban air temperature was setup according to the certain correlation patten .Reference to the relational standard of assessing human comfort and other meteorology data of Hangzhou City in summer,the spatial distribution characteristic and the spatial varia-tion degree of human comfort of heat environmental quality are estimated and mapped on a middle scale,that is ,in six districts of Hangzhou City .Then the paper reveals the main characteristic of spatial variation from 1991 to 1999.Lastly,the change mechanism is analyzed and discussed from the viewpoint of city planning,construction and environmental protec-tion.  相似文献   
10.
Variables related to urban park awareness are identified and methods for relaxing assumptions of perfect information in park use models are discussed. Park awareness is related to park characteristics (age and degree of development of the park), population characteristics (race, age, length of residence, recreation participation), and distance. Park attributes are stronger predictors of both park awareness and use than is distance. These findings parallel similar research on the cognitive aspects of shopping decisions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号