首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56310篇
  免费   9739篇
  国内免费   11797篇
测绘学   5584篇
大气科学   6038篇
地球物理   12529篇
地质学   32513篇
海洋学   6313篇
天文学   2315篇
综合类   3805篇
自然地理   8749篇
  2024年   163篇
  2023年   528篇
  2022年   1414篇
  2021年   1743篇
  2020年   1813篇
  2019年   2186篇
  2018年   1727篇
  2017年   2044篇
  2016年   2128篇
  2015年   2329篇
  2014年   2993篇
  2013年   3118篇
  2012年   3321篇
  2011年   3583篇
  2010年   3077篇
  2009年   3652篇
  2008年   3640篇
  2007年   4040篇
  2006年   3911篇
  2005年   3393篇
  2004年   3172篇
  2003年   3049篇
  2002年   2666篇
  2001年   2367篇
  2000年   2202篇
  1999年   2053篇
  1998年   1754篇
  1997年   1574篇
  1996年   1441篇
  1995年   1188篇
  1994年   1197篇
  1993年   1027篇
  1992年   813篇
  1991年   572篇
  1990年   514篇
  1989年   398篇
  1988年   314篇
  1987年   191篇
  1986年   134篇
  1985年   94篇
  1984年   49篇
  1983年   37篇
  1982年   38篇
  1981年   28篇
  1980年   32篇
  1979年   29篇
  1978年   44篇
  1977年   29篇
  1975年   4篇
  1954年   17篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
The groundwater divide is a key feature of river basins and significantly influenced by subsurface hydrological processes. For an unconfined aquifer between two parallel rivers or ditches, it has long been defined as the top of the water table based on the Dupuit–Forchheimer approximation. However, the exact groundwater divide is subject to the interface between two local flow systems transporting groundwater to rivers from the infiltration recharge. This study contributes a new analytical model for two-dimensional groundwater flow between rivers of different water levels. The flownet is delineated in the model to identify groundwater flow systems and the exact groundwater divide. Formulas with two dimensionless parameters are derived to determine the distributed hydraulic head, the top of the water table and the groundwater divide. The locations of the groundwater divide and the top of the water table are not the same. The distance between them in horizontal can reach up to 8.9% of the distance between rivers. Numerical verifications indicate that simplifications in the analytical model do not significantly cause misestimates in the location of the groundwater divide. In contrast, the Dupuit–Forchheimer approximation yields an incorrect water table shape. The new analytical model is applied to investigate groundwater divides in the Loess Plateau, China, with a Monte Carlo simulation process taking into account the uncertainties in the parameters.  相似文献   
2.
The source and hydrochemical makeup of a stream reflects the connectivity between rainfall, groundwater, the stream, and is reflected to water quantity and quality of the catchment. However, in a semi-arid, thick, loess covered catchment, temporal variation of stream source and event associated behaviours are lesser known. Thus, the isotopic and chemical hydrographs in a widely distributed, deep loess, semi-arid catchment of the northern Chinese Loess Plateau were characterized to determine the source and hydrochemical behaviours of the stream during intra-rainfall events. Rainfall and streamflow were sampled during six hydrologic events coupled with measurements of stream baseflow and groundwater. The deuterium isotope (2H), major ions (Cl, SO42−, NO3, Ca2+, K+, Mg2+, and Na+) were evaluated in water samples obtained during rainfall events. Temporal variation of 2H and Cl measured in the groundwater and stream baseflow prior to rainfall was similar; however, the isotope compositions of the streamflow fluctuated significantly and responded quickly to rainfall events, likely due to an infiltration excess, overland dominated surface runoff during torrential rainfall events. Time source separation using 2H demonstrated greater than 72% on average, the stream composition was event water during torrential rainfall events, with the proportion increasing with rainfall intensity. Solutes concentrations in the stream had loglinear relationships with stream discharge, with an outling anomaly with an example of an intra-rainfall event on Oct. 24, 2015. Stream Cl behaved nonconservative during rainfall events, temporal variation of Cl indicated a flush and washout at the onset of small rainfall events, a dilution but still high concentration pattern in high discharge and old water dominated in regression flow period. This study indicates rainfall intensity affects runoff responses in a semi-arid catchment, and the stored water in the thick, loess covered areas was less connected with stream runoff. Solute transport may threaten water quality in the area, requiring further analysis of the performance of the eco-restoration project.  相似文献   
3.
To date, passive flux meters have predominantly been applied in temperate environments for tracking the movement of contaminants in groundwater. This study applies these instruments to reduce uncertainty in (typically instantaneous) flux measurements made in a low-gradient, wetland dominated, discontinuous permafrost environment. This method supports improved estimation of unsaturated and over-winter subsurface flows which are very difficult to quantify using hydraulic gradient-based approaches. Improved subsurface flow estimates can play a key role in understanding the water budget of this landscape.  相似文献   
4.
Flow through rough fractures is investigated numerically in order to assess the validity of the local cubic law for different fracture geometries. Two‐dimensional channels with sinusoidal walls having different geometrical properties defined by the aperture, the amplitude, and the wavelength of the walls' corrugations, the corrugations asymmetry, and the phase shift between the two walls are considered to represent different fracture geometries. First, it is analytically shown that the hydraulic aperture clearly deviates from the mean aperture when the walls' roughness, the phase shift, and/or the asymmetry between the fracture walls are relatively high. The continuity and the Navier–Stokes equations are then solved by means of the finite element method and the numerical solutions compared to the theoretical predictions of the local cubic law. Reynolds numbers ranging from 0.066 to 66.66 are investigated so as to focus more particularly on the effect of flow inertial effects on the validity of the local cubic law. For low Reynolds number, typically less than 15, the local cubic law properly describes the fracture flow, especially when the fracture walls have small corrugation amplitudes. For Reynolds numbers higher than 15, the local cubic law is valid under the conditions that the fracture presents a low aspect ratio, small corrugation amplitudes, and a moderate phase lag between its walls.  相似文献   
5.
Reservoirs of lowland floodplain rivers with eutrophic backgrounds cause variations in the hydrological and hydraulic conditions of estuaries and low-dam reservoir areas, which can promote planktonic algae to proliferate and algal bloom outbreaks. Understanding the ecological effects of variations in hydrological and hydraulic processes in lowland rivers is important for algal bloom control. In this study, the middle and lower reaches of the Han River, China, a typical regulated lowland river with a eutrophic background, are selected. Based on the effect of hydrological and hydraulic variability on algal blooms, a hydrological management strategy for river algal bloom control is proposed. The results showed that (a) differences in river morphology and background nutrient levels cause significant differences in the critical threshold flow velocities for algal bloom outbreaks between natural river and low-dam reservoir sections; there is no uniform threshold flow velocity for algal bloom control. (b) There are significant differences in the river hydrological/hydraulic conditions between years with and without algal blooms. The average river flow, water level and velocity in years with algal blooms are significantly lower than those in years without algal blooms. (c) For different river sections where algal blooms occur and to meet the threshold flow velocities, the joint operation of cascade reservoirs and diversion projects is an effective method to prevent and control algal blooms in regulated lowland rivers. This study is expected to deepen our understanding of the ecological significance of special hydrological processes and guide algal bloom management in regulated lowland rivers.  相似文献   
6.
In order to model non‐Fickian transport behaviour in groundwater aquifers, various forms of the time–space fractional advection–dispersion equation have been developed and used by several researchers in the last decade. The solute transport in groundwater aquifers in fractional time–space takes place by means of an underlying groundwater flow field. However, the governing equations for such groundwater flow in fractional time–space are yet to be developed in a comprehensive framework. In this study, a finite difference numerical scheme based on Caputo fractional derivative is proposed to investigate the properties of a newly developed time–space fractional governing equations of transient groundwater flow in confined aquifers in terms of the time–space fractional mass conservation equation and the time–space fractional water flux equation. Here, we apply these time–space fractional governing equations numerically to transient groundwater flow in a confined aquifer for different boundary conditions to explore their behaviour in modelling groundwater flow in fractional time–space. The numerical results demonstrate that the proposed time–space fractional governing equation for groundwater flow in confined aquifers may provide a new perspective on modelling groundwater flow and on interpreting the dynamics of groundwater level fluctuations. Additionally, the numerical results may imply that the newly derived fractional groundwater governing equation may help explain the observed heavy‐tailed solute transport behaviour in groundwater flow by incorporating nonlocal or long‐range dependence of the underlying groundwater flow field.  相似文献   
7.
The Three Gorges Project is the world's largest water conservancy project. According to the design standards for the 1,000‐year flood, flood diversion areas in the Jingjiang reach of the Yangtze River must be utilized to ensure the safety of the Jingjiang area and the city of Wuhan. However, once these areas are used, the economic and life loss in these areas may be very great. Therefore, it is vital to reduce this loss by developing a scheme that reduces the use of the flood diversion areas through flood regulation by the Three Gorges Reservoir (TGR), under the premise of ensuring the safety of the Three Gorges Dam. For a 1,000‐year flood on the basis of a highly destructive flood in 1954, this paper evaluates scheduling schemes in which flood diversion areas are or are not used. The schemes are simulated based on 2.5‐m resolution reservoir topography and an optimized model of dynamic capacity flood regulation. The simulation results show the following. (a) In accord with the normal flood‐control regulation discharge, the maximum water level above the dam should be not more than 175 m, which ensures the safety of the dam and reservoir area. However, it is necessary to utilize the flood diversion areas within the Jingjiang area, and flood discharge can reach 2.81 billion m3. (b) In the case of relying on the TGR to impound floodwaters independently rather than using the flood diversion areas, the maximum water level above the dam reaches 177.35 m, which is less than the flood check level of 180.4 m to ensure the safety of the Three Gorges Dam. The average increase of the TGR water level in the Chongqing area is not more than 0.11 m, which indicates no significant effect on the upstream reservoir area. Comparing the various scheduling schemes, when the flood diversion areas are not used, it is believed that the TGR can execute safe flood control for a 1,000‐year flood, thereby greatly reducing flood damage.  相似文献   
8.
The impact of turbulent flow on plane strain fluid‐driven crack propagation is an important but still poorly understood consideration in hydraulic fracture modeling. The changes that hydraulic fracturing has experienced over the past decade, especially in the area of fracturing fluids, have played a major role in the transition of the typical fluid regime from laminar to turbulent flow. Motivated by the increasing preponderance of high‐rate, water‐driven hydraulic fractures with high Reynolds number, we present a semianalytical solution for the propagation of a plane strain hydraulic fracture driven by a turbulent fluid in an impermeable formation. The formulation uses a power law relationship between the Darcy‐Weisbach friction factor and the scale of the fracture roughness, where one specific manifestation of this generalized friction factor is the classical Gauckler‐Manning‐Strickler approximation for turbulent flow in a rough‐walled channel. Conservation of mass, elasticity, and crack propagation are also solved simultaneously. We obtain a semianalytical solution using an orthogonal polynomial series. An approximate closed‐form solution is enabled by a choice of orthogonal polynomials embedding the near‐tip asymptotic behavior and thus giving very rapid convergence; a precise solution is obtained with 2 terms of the series. By comparison with numerical simulations, we show that the transition region between the laminar and turbulent regimes can be relatively small so that full solutions can often be well approximated by either a fully laminar or fully turbulent solution.  相似文献   
9.
本文回顾了自然和自然贡献情景模型发展的背景、历史和内容,概括总结了自然和自然贡献情景模型的发展进程以及联合国生物多样性与生态系统服务政府间科学—政策平台(IPBES)情景模型的概念框架,讨论了自然和自然贡献情景模型存在的问题和发展方向。为了在全球层面解决现有综合集成模型存在的问题,根据地球表层建模基本定理和生态环境曲面建模基本定理,提出了具有中国原创特点的自然与自然贡献情景模型概念框架。  相似文献   
10.
利用用友软件对如何合并会计报表进行了初步研究,并以案例的形式阐明了采用用友软件实现合并会计报表的步骤,提出了合并会计报表的编制方法。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号