首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
测绘学   1篇
地质学   3篇
  2013年   4篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Magmatism,metamorphism and metasomatism in the Palaeoproterozoic‐Mesoproterozoic Mt Painter Inlier and overlying Neoproterozoic Adelaidean rocks in the northern Flinders Ranges (South Australia) have previously been interpreted as resulting from the ca 500 Ma Delamerian Orogeny. New Rb–Sr, Sm–Nd and U–Pb data, as well as structural analysis,indicate that the area also experienced a second thermal event in the Late Ordovician (ca 440 Ma). The Delamerian Orogeny resulted in large‐scale folding, prograde metamorphism and minor magmatic activity in the form of a small volume of pegmatites and leucogranites. The Late Ordovician event produced larger volumes of granite (the British Empire Granite in the core of the inlier) and these show Nd isotopic evidence for a mantle component. The high‐temperature stage of this magmatic‐hydrothermal event also gave rise to unusual diopside‐titanite veins and the primary uranium mineralisation in the basement, of which the remobilisation was younger than 3.5 Ma. It is possible that parts of the Mt Gee quartz‐hematite epithermal system developed during the waning stages of the Late Ordovician event. We suggest that the Ordovician hydrothermal system was also the cause of the commonly observed retrogression of Delamerian metamorphic minerals (cordierite, andalusite) and the widespread development of actinolite, scapolite, tremolite and magnetite in the cover sequences. Deformation during the Late Ordovician was brittle. The recognition of the Late Ordovician magmatic‐hydrothermal event in the Mt Painter Province might help to link the tectonic evolution of central Australia and the southeast Australian Lachlan Fold Belt.  相似文献   
2.
Scree Representation on Topographic Maps   总被引:1,自引:0,他引:1  
Abstract

<title/>

Scree patterns are an important element of mountain maps in Swiss style. The size and density of scree dots vary with the exposition towards a source of illumination, which makes the dots extremely labour intensive to map without specialized algorithms. This paper identifies design principles for the symbolisation of scree fields on mountain slopes and presents a digital method for the quick placement of dot symbols requiring only minimal interventions by a cartographer. When digitally produced scree is combined with a shaded relief and a rock drawing, the terrain appears as a continuous three-dimensional surface to the reader. The described method is implemented in Scree Painter, a specialized free open-source software application. Scree patterns produced with Scree Painter match the quality standards of manually generated scree representations.  相似文献   
3.
Field and petrographic studies on granitic, hematitic and chloritic breccias in the central portion of the Mount Painter Inlier, South Australia, indicate that: (i) breccias and brecciated basement extend to depths exceeding 400 m and have gradational contacts; (ii) clasts are mainly autochthonous and contain fine‐scale hematite, chlorite or quartz veinlets and fractures; (iii) K‐metasomatism preceded hematitisation and chloritisation; (iv) hematitic breccia intrudes a pegmatite dyke correlated with the Ordovician Arkaroola Pegmatite; and (v) U, F and REE‐containing minerals are present in the Proterozoic basement rocks, and concentrated in the breccias.

With a single exception, δ34S values for pyrite from the breccias and brecciated granites fall in the narrow range —2.9% to +3.5%, implying formation from magmatic emanations or reducing fluids that leached sulphide minerals of magmatic derivation. δ34S values for three barite samples are all close to +16%o, and firm conclusions cannot be drawn from these data. Calcites from the same rock‐types as the pyrite have δ13C values of — 22.3%o to —4.2%o and δ18O values of 4.0%o to +23.1%., with an inverse δ13C/δ18O relationship. The more 13C‐depleted calcites probably incorporated CO2 from organic C, and their δ18O values are compatible with precipitation from magmatic or metamorphic fluids; mixing of such fluids with meteoric waters is implied by the calcites with variably lower δ18O values.

The above features indicate that the major processes leading to brecciation and associated metasomatism were hydraulic fracturing and hydrothermal activity resulting from ascent of granitic magmas to shallow crustal levels during late stages (late Ordovician‐?Silurian) of the Delamerian Orogeny. Tectonic and sedimentary processes appear to have played relatively minor roles in breccia formation.  相似文献   
4.
Apatite fission track results are reported for 26 outcrop samples from the Mt Painter Inlier, Mt Babbage Inlier and adjacent Neoproterozoic rocks of the northwestern Curnamona Craton of South Australia. Forward modelling of the data indicates that the province experienced variable regional cooling from temperatures >110°C during the Late Palaeozoic (Late Carboniferous to Early Permian). The timing of this cooling is similar to that previously reported from elsewhere in the Adelaide Fold Belt and the Curnamona Craton, suggesting that the entire region underwent extensive Late Palaeozoic cooling most likely related to the waning stages of the Alice Springs or Kanimblan Orogenies. Results from the Paralana Fault Zone indicate that the eastern margin of the Mt Painter Inlier experienced a second episode of cooling (~40–60°C) during the Paleocene to Eocene. The entire region also experienced significant cooling (less than ~40°C) during the Late Cretaceous to Palaeogene in response to unroofing and/or a decrease in geothermal gradient. Regional cooling/erosion during this time is supported by: geomorphological and geophysical evidence indicating Tertiary exhumation of at least 1 km; Eocene sedimentation initiated in basins adjacent to the Flinders and Mt Lofty Ranges sections of the Adelaide Fold Belt; and Late Cretaceous ‐ Early Tertiary cooling previously reported from apatite fission track studies in the Willyama Inliers and the southern Adelaide Fold Belt. Late Cretaceous to Palaeogene cooling is probably related to a change in stress field propagated throughout the Australian Plate, and driven by the initiation of sea‐floor spreading in the Tasman Sea in the Late Cretaceous and the Eocene global plate reorganisation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号