首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   2篇
  国内免费   7篇
地质学   9篇
海洋学   1篇
综合类   1篇
  2023年   1篇
  2022年   1篇
  2018年   1篇
  2011年   1篇
  2006年   2篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  1999年   1篇
  1995年   1篇
排序方式: 共有11条查询结果,搜索用时 31 毫秒
1.
第32届国际地质大会通过按地域和构造作用过程等形式划分11个专题会场,展示了地球动力学的研究成果。其成果主要包括特提斯域构造演化及其不同阶段的块体裂解、拼合及后期改造的细节过程,地质历史中的超大陆分布和成因,俯冲—碰撞带深部构造和变质机制,安第斯山(Andes)缓倾角平坦式俯冲过程及其地壳变形和岩浆作用的响应,显微构造对动力作用过程的影响和控制,地壳和上地幔熔融、流变学和动力学意义,大洋岩石圈构造与演化,大陆地盾区构造和再活动,稳定大陆区地震,空间大地测量学和现代板块运动等方面。这些研究成果充分显示了地球动力学研究具有多学科、多手段(如古地磁、超深钻、地球物理、大地测量和GPS等)、多尺度(宏观、微观)和多时期、全面、综合、并逐步接近定时、定位和定量地探索和研究的特点,它从地球(主要为上地幔和地壳)的组成、结构构造入手,逐步认识地球(主要为地球岩石圈)的演化和动力学。  相似文献   
2.
青藏高原隆升的过程和机制   总被引:91,自引:2,他引:91  
青藏高原夹持于土兰、塔里木、华北、扬子与印度等刚性地块之间,在地球物理场和岩石圈结构构造上构成一个相对独立的构造系统。白垩纪晚期到始新世,高原开始了一个地壳缩短、加厚和不断隆升的新阶段。高原隆升可以划分为俯冲碰撞隆升、汇聚挤压隆升和均衡调整隆升3个阶段。高原地壳的加厚、缩短是在压应力作用下通过不同层次物质以不同的运动形式实现的,高原隆升的过程和机制可以概括为“陆内汇聚-地壳分层加厚-重力均衡调整”的隆升模式。  相似文献   
3.
胶南-威海造山带中的榴辉岩为晋宁早期板块俯冲作用的产物;沿造山带广泛分布的花岗质片麻岩,则为晋宁晚期板块由俯冲转为碰撞过程中同造山岩浆事件的产物.它们与全球性的格林威尔造山运动属同一事件范畴,但具有明显的穿时性.侵入于同造山花岗质片麻岩的片麻状花岗岩及震旦纪朋河石组,为后造山伸展机制下发生的岩浆及沉积事件的产物,与700~650Ma期间Rodinia超大陆的裂解作用密切相关.  相似文献   
4.
论碰撞作用时间   总被引:2,自引:0,他引:2       下载免费PDF全文
万天丰 《地学前缘》2011,18(3):48-56
以中国及欧洲大陆一些碰撞带所测得的同位素年龄为基础,讨论板块从俯冲到碰撞的过程,认为依次发生了如下事件:俯冲板块的运移速度减慢,洋壳在地表消失,开始碰撞,形成强构造变形与动力变质作用,发生一系列的岩浆活动,最后才隆升成山。这些事件都具有不同的同位素年龄。碰撞的初始作用时间,应该在所测年龄最新的洋壳消失以后,在强构造变形与动力变质作用发生之前。显然,如果只想使用任何一种地质事件的年龄来确定碰撞作用的初始作用时间都是很困难的。俯冲板块运移的初次减速很可能是由于从原来具有典型大洋岩石圈结构的板块俯冲,转变为洋陆过渡型板块俯冲所致。对于较小的、强度不大的板块来说,如中国大陆地块群,在板块碰撞与拼合之后,大陆板块仍可发生地壳转动或大幅度的位移。沿碰撞带主断层面贯入的“钉合岩体”可以是同构造期形成的,也可能是继续碰撞作用的产物。  相似文献   
5.
两广云开隆起区基性侵入岩的地球化学特征及其构造意义   总被引:8,自引:1,他引:8  
云开隆起区信宜、高州一带条带-眼球状(环斑)花岗质岩石中基性侵入岩主要为变苏长辉长岩和变辉长岩,TiO2含量(0.24%~0.53%)和稀土元素总量(18.64~78.30μg/g)较低,轻稀土元素富集(LREE/HREE=2.69~5.28,(La/Yb)N=1.79~4.73),Ta、Nb、P、Zr、Ti为明显负异常,无明显Eu负异常(δEu=0.81~1.16),La/Nb=1.94~5.42,Th/Ta=2.29~17.63,Nb/Th<7.4,εNd(t)=-3.6~-8.4,高Ti/Zr、Ti/Y,低Rb/Ba、La/Yb和EMⅡ,显示富集地幔源区的特征.变苏长辉长岩Sm-Nd岩石-矿物同位素等时线年龄为392Ma±53Ma,表明加里东期的基性侵入岩形成于俯冲-碰撞大陆边缘的火山弧构造背景,而且是俯冲-碰撞后伸展-拆沉-底侵作用阶段的产物.  相似文献   
6.
Ultrahigh-pressure(UHP) metamorphic rocks are distinctive products of crustal deep subduction,and are mainly exposed in continental subduction-collision terranes. UHP slices of continental crust are usually involved in multistage exhumation and partial melting, which has obvious influence on the rheological features of the rocks, and thus significantly affect the dynamic behavior of subducted slices. Moreover,partial melting of UHP rocks have significant influence on element mobility and related isotope behavior within continental subduction zones, which is in turn crucial to chemical differentiation of the continental crust and to crust-mantle interaction.Partial melting can occur before, during or after the peak metamorphism of UHP rocks. Post-peak decompression melting has been better constrained by remelting experiments; however, because of multiple stages of decompression, retrogression and deformation, evidence of former melts in UHP rocks is often erased. Field evidence is among the most reliable criteria to infer partial melting. Glass and nanogranitoid inclusions are generally considered conclusive petrographic evidence. The residual assemblages after melt extraction are also significant to indicate partial melting in some cases. Besides field and petrographic evidence, bulk-rock and zircon trace-element geochemical features are also effective tools for recognizing partial melting of UHP rocks. Phase equilibrium modeling is an important petrological tool that is becoming more and more popular in P-T estimation of the evolution of metamorphic rocks; by taking into account the activity model of silicate melt, it can predict when partial melting occurred if the P-T path of a given rock is provided.UHP silicate melt is commonly leucogranitic and peraluminous in composition with high SiO_2,low MgO, FeO, MnO, TiO_2 and CaO, and variable K_2 O and Na_2 O contents. Mineralogy of nanogranites found in UHP rocks mainly consists of plagioclase + K-feldspar + quartz, plagioclase being commonly albite-rich.Trace element pattern of the melt is characterized by significant enrichment of large ion lithophile elements(LILE), depletion of heavy rare earth elements(HREE) and high field strength elements(HFSE),indicating garnet and rutile stability in the residual assemblage. In eclogites, significant Mg-isotope fractionation occurs between garnet and phengite; therefore, Mg isotopes may become an effective indicator for partial melting of eclogites.  相似文献   
7.
宋谢炎  邓宇峰  颉炜  郑文勤 《矿床地质》2022,41(6):1108-1123
自20世纪80年代以来,中亚造山带南缘的北天山黄山-镜儿泉成矿带先后发现了黄山、黄山东、黄山南、图拉尔根等4处大型铜镍硫化物矿床,香山和葫芦2处中型矿床,以及一系列小型矿床和矿化岩体,使该地区成为世界最重要的造山带型铜镍硫化物成矿带,探明镍金属储量近100万t。近年来,又陆续发现了一些新的矿床和含矿岩体,说明仍然有很好的找矿潜力。中国学者针对这些含矿岩体的年代学、岩石学和矿床成因开展了大量研究,获得了不少重要成果,特别是,最近笔者通过对北天山岛弧系统俯冲-碰撞过程中不同阶段玄武岩浆作用特点和规律的梳理,对铜镍硫化物成矿的时代和构造条件形成了新的、更清晰的认识。然而,目前对该成矿带干墩断裂南北两侧含矿岩体及所含矿体形态、产状、规模显著差异成因意义的系统研究仍然十分薄弱,阻碍了对该成矿带岩浆通道成矿规律的深入理解。文章在上述新的研究成果基础上,对该成矿带铜镍硫化物岩浆通道成矿规律和控制因素进行了系统分析,目的是更好地理解造山带铜镍硫化物成矿规律,并为未来的找矿方向提供依据。文章提出碰撞后早期阶段是成矿的最佳时期,黄山-镜儿泉带的铜镍硫化物成矿作用是碰撞后早期阶段俯冲板片断离、软流圈上涌和强烈部分熔融、以及区域性右行走滑几种地质要素耦合的结果。  相似文献   
8.
金红石是高级变质岩和热液矿床中广为展布的一种矿物。目前,金红石在俯冲—碰撞和高压—超高压变质带中研究包括以下4个方面:①金红石在俯冲—碰撞带中的作用;②金红石同质多象变体;③金红石的U Pb定年;④金红石对源区的示踪。第一方面的研究一直是最近10余年来研究的主题之一,而后3个方面的研究尚处于起步阶段,上述研究对认识俯冲—碰撞过程中埃达克岩的成因和特征,对超高压大陆深俯冲深度及形成岩石温压条件的限定,对重塑超高压或高级变质地体峰期变质事例年龄,对赋存金红石岩石的源区示踪具有重要的意义。  相似文献   
9.
江尕勒萨依榴辉岩的主要特征及其地质意义   总被引:1,自引:0,他引:1  
于新疆且末县江尕勒萨依发现两种不同类型的榴辉岩,它们的地质产状、矿物组成、岩石化学成分、地球化学特征及峰期变质温压条件均有明显的差别。北带榴辉岩属暗色富铁型,南带榴辉岩为浅色富镁铝型,两者都具有高压变质带的特征,是塔里木地块东南缘持续俯冲先后与两个或多个前寒武纪微地块碰撞的产物。阿尔金岩群实际上是碰撞拼贴的杂岩带,是加里东碰撞造山带山根之一部分。  相似文献   
10.
This study involved outcrop, drilling, seismic, gravity, and magnetic data to systematically document the geological records of the subduction process of Proto-South China Sea (PSCS) and establish its evolution model. The results indicate that a series of arc-shaped ophiolite belts and calcalkaline magmatic rocks are developed in northern Borneo, both of which have the characteristics of gradually changing younger from west to east, and are direct signs of subduction and collision of PSCS. At the same time, the subduction of PSCS led to the formation of three accretion zones from the south to the north in Borneo, the Kuching belt, Sibu belt, and Miri belt. The sedimentary formation of northern Borneo is characterized by a three-layer structure, with the oceanic basement at the bottom, overlying the deep-sea flysch deposits of the Rajang–Crocker group, and the molasse sedimentary sequence that is dominated by river-delta and shallow marine facies at the top, recording the whole subduction–collision–orogeny process of PSCS. Further, seismic reflection and tomography also confirmed the subduction and collision of PSCS. Based on the geological records of the subduction and collision of PSCS, combined with the comprehensive analysis of segmented expansion and key tectonic events in the South China Sea, we establish the “gradual” subduction-collision evolution model of PSCS. During the late Eocene to middle Miocene, the Zengmu, Nansha, and Liyue–Palawan blocks were separated by West Baram Line and Balabac Fault, which collided with the Borneo block and Kagayan Ridge successively from the west to the east, forming several foreland basin systems, and PSCS subducted and closed from the west to the east. The subduction and extinction of PSCS controlled the oil and gas distribution pattern of southern South China Sea (SSCS) mainly in three aspects. First, the “gradual” closure process of PSCS led to the continuous development of many large deltas in SSCS. Second, the deltas formed during the subduction–collision of PSCS controlled the development of source rocks in the basins of SSCS. Macroscopically, the distribution and scale of deltas controlled the distribution and scale of source rocks, forming two types of source rocks, namely, coal measures and terrestrial marine facies. Microscopically, the difference of terrestrial higher plants carried by the delta controlled the proportion of macerals of source rocks. Third, the difference of source rocks mainly controlled the distribution pattern of oil and gas in SSCS. Meanwhile, the difference in the scale of source rocks mainly controlled the difference in the amount of oil and gas discoveries, resulting in a huge amount of oil and gas discoveries in the basin of SSCS. Meanwhile, the difference of macerals of source rocks mainly controlled the difference of oil and gas generation, forming the oil and gas distribution pattern of “nearshore oil and far-shore gas”.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号