首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2875篇
  免费   810篇
  国内免费   540篇
测绘学   21篇
大气科学   11篇
地球物理   234篇
地质学   3218篇
海洋学   387篇
天文学   17篇
综合类   137篇
自然地理   200篇
  2024年   8篇
  2023年   30篇
  2022年   56篇
  2021年   97篇
  2020年   93篇
  2019年   112篇
  2018年   98篇
  2017年   119篇
  2016年   146篇
  2015年   142篇
  2014年   183篇
  2013年   169篇
  2012年   194篇
  2011年   227篇
  2010年   195篇
  2009年   206篇
  2008年   190篇
  2007年   169篇
  2006年   169篇
  2005年   176篇
  2004年   156篇
  2003年   142篇
  2002年   126篇
  2001年   111篇
  2000年   140篇
  1999年   120篇
  1998年   89篇
  1997年   87篇
  1996年   76篇
  1995年   72篇
  1994年   69篇
  1993年   61篇
  1992年   41篇
  1991年   38篇
  1990年   30篇
  1989年   19篇
  1988年   20篇
  1987年   13篇
  1986年   9篇
  1985年   7篇
  1984年   10篇
  1983年   4篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1973年   1篇
  1954年   1篇
排序方式: 共有4225条查询结果,搜索用时 15 毫秒
1.
红阳煤田含煤地层太原组与山西组,是一套典型的“海陆交互相”沉积。依据剖面上沉积相序列变化特点,可划分为14个沉积旋回,每个沉积旋回均含有一层煤。有二种聚煤环境:一是海水退出潮坪后形成的泥炭沼泽聚积的煤层;二是扇三角洲平原形成的泥炭沼泽聚积的煤层。  相似文献   
2.
成生于冰碛扇内,经一定的生物、物理、化学成矿作用,以砂金形态分布而富集成矿的金矿称为冰碛扇型砂金矿床。它具有沿造山带一定标高范围成群、成带分布,沉积物为近源且半胶结,砂金呈面状分布,并以粒金、块金为主,具胶状、浑圆状、包块状构造形态,分布极不均匀等特征。冰碛扇型砂金矿床的成矿作用与河成砂金矿床有本质的区别。它的成矿作用模式是:造山带下地壳富含的活化金通过新构造运动活化的断裂运移地表,经地下流体和地表流体的迁移聚集到冰碛扇这一封闭稳定的生物、物理、化学障环境中,主要经高效聚金微生物有机胶体成矿作用沉淀、再生加大形成砂金,逐步富集成矿床。而红色磨拉石建造中风化离解的Fe,Mn物质对沉淀环境pH值起着一定的调节作用。冰碛扇型砂金矿床在我国西部造山带内广泛分布,具有一定的工业价值,是砂金矿床中一重要类型,应予以重视  相似文献   
3.
The Waterman Metamorphic Complex of the central Mojave Desert was exposed as a consequence of early Miocene detachment-dominated extension. However, it has evidence consistent with a more extensive geological history that involves collision of a crustal fragment(s), tectonic thickening by overthrusting and two periods of extension. The metamorphic complex contains granitoid intrusives and felsic mylonitic gneisses as well as polymetamorphic rocks that include marble, calc-silicate, quartzite. mafic granulite, pyribolite, amphibolite, migmatite and biotite schist. The latter group of rocks was affected by an initial series of high-grade metamorphic events (M1 and M2) and a localized lower grade overprint (M3). The initial metamorphism (M1) can be separated into two stages along its high-grade P–T path: M1a, a granulite facies metamorphism at 800–850° C and 7.5–9 kbar and Mlb, an upper amphibolite facies overprint at 750–800° C and 10–12 kbar. M1a developed mineral assemblages and textures consistent with granulite facies conditions at a reduced activity of H2O and is associated with intense ductile deformation (D1) and minor local partial melting. M1b overprinted the granulite assemblages with a series of hydrous phases under conditions of increasing pressure and H2O activity and is accompanied by little or no deformation. M2 developed at lower pressures and temperatures (650–750° C, 4.5–5.5 kbar) and is distinguished by a second local overprint of hydrous phases that reflects an input of aqueous fluids probably associated with the intrusion of a series of granitic dykes and veins. Effects of M3 are confined to the Mitchel detachment zone, an anastomosing early Miocene detachment fault, and are characterized by local ductile/brittle deformation (D2) of the pre-existing high-grade rocks and granitoid intrusives and by the production of mylonites and mylonitic gneisses under greenschist facies conditions (300–350° C, 3–5 kbar). The initial overprint (M1a) represents metamorphism, devolatilization and minor partial melting of supracrustal rocks under granulite facies conditions as a consequence of tectonic and, possibly, magmatic thickening. The increasing pressure transition of M1a to M1b reflects a period of continued compressional tectonism, thrusting and influx of H2O, in part, locally related to crystallization of partial melts. The near isothermal decompression between M1b and M2 probably represents a pre-112-Ma extensional episode that may have been the result of a decompressional readjustment of a thickened crust. Following the initial extensional event, the metamorphic complex remained at depths of 10–17 km for at least 90 Ma until it was uplifted following Miocene extension. M3 develops locally in response to this second extensional period resulting from the early Miocene detachment faulting.  相似文献   
4.
Long-range sidescan sonar can be used to map sediment distributions over wide expanses of deep ocean floor. Seven acoustic facies that arise from differing sediment or rock types have been mapped over the low-relief Saharan continental rise and Madeira abyssal plain. These have been calibrated with sampling, profiling and camera studies and the facies can be traced confidently on a regional scale using the sidescan data. The mapping of the sediment distribution shows that a complex interplay of turbidity current and debris flow processes can occur at a continental rise/abysaal plain transition over 1000 km from the nearest continental slope.  相似文献   
5.
Abstract Large calcite veins and pods in the Proterozoic Corella Formation of the Mount Isa Inlier provide evidence for kilometre-scale fluid transport during amphibolite facies metamorphism. These 10- to 100-m-scale podiform veins and their surrounding alteration zones have similar oxygen and carbon isotopic ratios throughout the 200 × 10-km Mary Kathleen Fold Belt, despite the isotopic heterogeneity of the surrounding wallrocks. The fluids that formed the pods and veins were not in isotopic equilibrium with the immediately adjacent rocks. The pods have δ13Ccalcite values of –2 to –7% and δ18Ocalcite values of 10.5 to 12.5%. Away from the pods, metadolerite wallrocks have δ18Owhole-rock values of 3.5 to 7%. and unaltered banded calc-silicate and marble wallrocks have δ13Ccalcite of –1.6 to –0.6%, and δ18Ocalcite of 18 to 21%. In the alteration zones adjacent to the pods, the δ18O values of both metadolerite and calc-silicate rocks approach those of the pods. Large calcite pods hosted entirely in calc-silicates show little difference in isotopic composition from pods hosted entirely in metadolerite. Thus, 100- to 500-m-scale isotopic exchange with the surrounding metadolerites and calc-silicates does not explain the observation that the δ18O values of the pods are intermediate between these two rock types. Pods hosted in felsic metavolcanics and metasiltstones are also isotopically indistinguishable from those hosted in the dominant metadolerites and calc-silicates. These data suggest the veins are the product of infiltration of isotopically homogeneous fluids that were not derived from within the Corella Formation at the presently exposed crustal level, although some of the spread in the data may be due to a relatively small contribution from devolatilization reactions in the calc-silicates, or thermal fluctuations attending deformation and metamorphism. The overall L-shaped trend of the data on plots of δ13C vs. δ18O is most consistent with mixing of large volumes of externally derived fluids with small volumes of locally derived fluid produced by devolatilization of calc-silicate rocks. Localization of the vein systems in dilatant sites around metadolerite/calc-silicate boundaries indicates a strong structural control on fluid flow, and the stable isotope data suggest fluid migration must have occurred at scales greater than at least 1 km. The ultimate source for the external fluid is uncertain, but is probably fluid released from crystallizing melts derived from the lower crust or upper mantle. Intrusion of magmas below the exposed crustal level would also explain the high geothermal gradient calculated for the regional metamorphism.  相似文献   
6.
In the Shackleton Range of East Antarctica, garnet-bearing ultramafic rocks occur as lenses in supracrustal high-grade gneisses. In the presence of olivine, garnet is an unmistakable indicator of eclogite facies metamorphic conditions. The eclogite facies assemblages are only present in ultramafic rocks, particularly in pyroxenites, whereas other lithologies – including metabasites – lack such assemblages. We conclude that under high-temperature conditions, pyroxenites preserve high-pressure assemblages better than isofacial metabasites, provided the pressure is high enough to stabilize garnet–olivine assemblages (i.e. ≥18–20 kbar). The Shackleton Range ultramafic rocks experienced a clockwise P–T path and peak conditions of 800–850 °C and 23–25 kbar. These conditions correspond to ∼70 km depth of burial and a metamorphic gradient of 11–12 °C km−1 that is typical of a convergent plate-margin setting. The age of metamorphism is defined by two garnet–whole-rock Sm–Nd isochrons that give ages of 525 ± 5 and 520 ± 14 Ma corresponding to the time of the Pan-African orogeny. These results are evidence of a Pan-African suture zone within the northern Shackleton Range. This suture marks the site of a palaeo-subduction zone that likely continues to the Herbert Mountains, where ophiolitic rocks of Neoproterozoic age testify to an ocean basin that was closed during Pan-African collision. The garnet-bearing ultramafic rocks in the Shackleton Range are the first known example of eclogite facies metamorphism in Antarctica that is related to the collision of East and West Gondwana and the first example of Pan-African eclogite facies ultramafic rocks worldwide. Eclogites in the Lanterman Range of the Transantarctic Mountains formed during subduction of the palaeo-Pacific beneath the East Antarctic craton.  相似文献   
7.
The Changjiang River (Yangtze) is one of the fastest growth areas of container transportation in Chi-na. Rail, road and water transportation have competed against each other for container transportation in the Chang-jiang River main line and its delta area. It is of significance to assess these different transportation modes scientifi-cally in order to organize container transportation efficiently in this area and make decision for integral plan and construction of transportation system in this area. This paper outlines application of fuzzy comprehensive evaluation to appraise different modes of typical direction of containers. Twelve assessment indexes were decided. Membership functions were formulated. Evaluation results indicated that road transportation was optimal mode in the Changjiang River delta area, however water transportation was the primary way in the Changjiang River main line.  相似文献   
8.
This study explores garnet coronas around hedenbergite, which were formed by the reaction plagioclase + hedenbergite→garnet + quartz, to derive information about diffusion paths that allowed for material redistribution during reaction progress. Whereas quartz forms disconnected single grains along the garnet/hedenbergite boundaries, garnet forms ~20‐μm‐wide continuous polycrystalline rims along former plagioclase/hedenbergite phase boundaries. Individual garnet crystals are separated by low‐angle grain boundaries, which commonly form a direct link between the reaction interfaces of the plagioclase|garnet|hedenbergite succession. Compositional variations in garnet involve: (i) an overall asymmetric compositional zoning in Ca, Fe2+, Fe3+ and Al across the garnet layer; and (ii) micron‐scale compositional variations in the near‐grain boundary regions and along plagioclase/garnet phase boundaries. These compositional variations formed during garnet rim growth. Thereby, transfer of the chemical components occurred by a combination of fast‐path diffusion along grain boundaries within the garnet rim, slow diffusion through the interior of the garnet grains, and by fast diffusion along the garnet/plagioclase and the garnet/hedenbergite phase boundaries. Numerical simulation indicates that diffusion of Ca, Al and Fe2+ occurred about three to four, four and six to seven orders of magnitude faster along the grain boundaries than through the interior of the garnet grains. Fast‐path diffusion along grain boundaries contributed substantially to the bulk material transfer across the growing garnet rim. Despite the contribution of fast‐path diffusion, bulk diffusion through the garnet rim was too slow to allow for chemical equilibration of the phases involved in garnet rim formation even on a micrometre scale. Based on published garnet volume diffusion data the growth interval of a 20‐μm‐wide garnet rim is estimated at ~103–104 years at the inferred reaction conditions of 760 ± 50 °C at 7.6 kbar. Using the same parameterization of the growth law, 100‐μm‐ and 1‐mm‐thick garnet rims would grow within 105–106 and 106–107 years respectively.  相似文献   
9.
金振奎  苏妮娜  王春生 《地质学报》2008,82(10):1323-1329
优质煤储层在此指厚度大、分布广、储集物性好的煤层。沉积相对优质煤储层的形成和分布有重要控制作用。通过浅海和泻湖淤积填平发育起来的潮坪环境和三角洲环境是最有利的优质煤储层形成环境,煤储层厚度大、分布广。沉积环境对煤储层中的灰分含量和镜质组含量有重要影响,而灰分含量和镜质组含量又直接影响煤储层的储集物性。灰分充填了煤储层中的孔隙,其含量越高,储集物性越差;镜质组有利于割理的形成,其含量越高,储集物性越好。由于在灰分含量、煤岩显微组分等方面的差异,潮坪环境沉积的煤储层的储集物性优于三角洲的煤储层,下三角洲平原沉积的煤储层优于上三角洲平原沉积的煤储层。海平面变化对优质煤储层的形成和分布也有重要控制作用。高位体系煤储层富集,单层厚度大,横向分布相当稳定,尤其是高位体系域晚期,是形成优质煤储层最有利的层位。而水进体系域煤储层稀少,单层厚度小,横向分布不稳定,不利于优质煤储层形成。  相似文献   
10.
Many cities around the world are developed at alluvial fans. With economic and industrial development and increase in population, quality and quantity of groundwater are often damaged by over-exploitation in these areas. In order to realistically assess these groundwater resources and their sustainability, it is vital to understand the recharge sources and hydrogeochemical evolution of groundwater in alluvial fans. In March 2006, groundwater and surface water were sampled for major element analysis and stable isotope (oxygen-18 and deuterium) compositions in Xinxiang, which is located at a complex alluvial fan system composed of a mountainous area, Taihang Mt. alluvial fan and Yellow River alluvial fan. In the Taihang mountainous area, the groundwater was recharged by precipitation and was characterized by Ca–HCO3 type water with depleted δ18O and δD (mean value of −8.8‰ δ18O). Along the flow path from the mountainous area to Taihang Mt. alluvial fan, the groundwater became geochemically complex (Ca–Na–Mg–HCO3–Cl–SO4 type), and heavier δ18O and δD were observed (around −8‰ δ18O). Before the surface water with mean δ18O of −8.7‰ recharged to groundwater, it underwent isotopic enrichment in Taihang Mt. alluvial fan. Chemical mixture and ion exchange are expected to be responsible for the chemical evolution of groundwater in Yellow River alluvial fan. Transferred water from the Yellow River is the main source of the groundwater in the Yellow River alluvial fan in the south of the study area, and stable isotopic compositions of the groundwater (mean value of −8.8‰ δ18O) were similar to those of transferred water (−8.9‰), increasing from the southern boundary of the study area to the distal end of the fan. The groundwater underwent chemical evolution from Ca–HCO3, Na–HCO3, to Na–SO4. A conceptual model, integrating stiff diagrams, is used to describe the spatial variation of recharge sources, chemical evolution, and groundwater flow paths in the complex alluvial fan aquifer system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号