首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   2篇
  国内免费   8篇
地球物理   4篇
地质学   43篇
自然地理   2篇
  2020年   1篇
  2019年   3篇
  2016年   3篇
  2015年   1篇
  2014年   1篇
  2013年   8篇
  2012年   6篇
  2009年   2篇
  2008年   4篇
  2006年   1篇
  2005年   5篇
  2004年   3篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1998年   2篇
  1997年   2篇
  1995年   1篇
  1994年   1篇
排序方式: 共有49条查询结果,搜索用时 359 毫秒
1.
郯庐断裂带张八岭隆起北段,自西向东分别出露北北东向的韧性滑脱变形带、脆-韧性过渡带和脆性的前陆褶断带。韧性滑脱变形带内的张八岭群片岩,广泛发生了低绿片相背景下的糜棱岩化。其中呈现为平缓的糜棱面理和近南北向的矿物拉伸线理。显微构造及石英C轴组构分析显示,该韧性滑脱带一致为上盘向南的运动。该带以东依次变为上盘向南南东→南东的逆冲活动,总体上为左旋走滑挤压变形带。张八岭群所在的韧性变形带为深部陡立走滑构造与浅部脆性构造之间的滑脱变形带,其间的差异走滑变形,造成了该滑脱层在总体向北运动中出现上盘向南的剪切变形。对6处张八岭群片岩中15个不同粒级白云母的40Ar/39Ar定年指示,变形发生在(236.2±0.5)~(238.0±0.4)Ma的中三叠世晚期。这表明郯庐断裂带的左行平移发生在华北与华南板块碰撞的深俯冲阶段,起源于陆内转换断层。  相似文献   
2.
This study presents a review of published geological data, combined with original observations on the tectonics of the Simplon massif and the Lepontine gneiss dome in the Western Alps. New observations concern the geometry of the Oligocene Vanzone back fold, formed under amphibolite facies conditions, and of its root between Domodossola and Locarno, which is cut at an acute angle by the Miocene, epi- to anchizonal, dextral Centovalli strike-slip fault. The structures of the Simplon massif result from collision over 50 Ma between two plate boundaries with a different geometry: the underthrusted European plate and the Adriatic indenter. Detailed mapping and analysis of a complex structural interference pattern, combined with observations on the metamorphic grade of the superimposed structures and radiometric data, allow a kinematic model to be developed for this zone of oblique continental collision. The following main Alpine tectonic phases and structures may be distinguished:
1.  NW-directed nappe emplacement, starting in the Early Eocene (~50 Ma);
2.  W, SW and S-verging transverse folds;
3.  transpressional movements on the dextral Simplon ductile shear zone since ~32 Ma;
4.  formation of the Bergell – Vanzone backfolds and of the southern steep belt during the Oligocene, emplacement of the mantle derived 31–29 Ma Bergell and Biella granodiorites and porphyritic andesites as well as intrusions of 29–25 Ma crustal aplites and pegmatites;
5.  formation of the dextral discrete Rhone-Simplon line and the Centovalli line during the Miocene, accompanied by the pull-apart development of the Lepontine gneiss dome – Dent Blanche (Valpelline) depression.
It is suggested that movements of shortening in fan shaped NW, W and SW directions accompanied the more regular NW- to WNW-directed displacement of the Adriatic indenter during continental collision.
Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Editorial Handling: Stefan Bucher  相似文献   
3.
The Palaeoproterozoic units of Terre Adélie show two types of structural domains associated with HT–LP metamorphic conditions: domes and NS–N340° striking vertical shear zones. Shear zones reflect dextral transpressive motions. Domes reflect sub-vertical shortening and principal stretching subparallel to shear zones. They could partly result from longitudinal flow coeval with transpression. Deformations are comparable to those described along the eastern and western boundaries of the Archean Gawler Craton (South-East Australia), which underlines the continuity between these two areas before opening of the Austral Ocean. To cite this article: A. Pelletier et al., C. R. Geoscience 334 (2002) 505–511.  相似文献   
4.
Ryota  Mori  Yujiro  Ogawa 《Island Arc》2005,14(4):571-581
Abstract   Structures developed in metamorphic and plutonic blocks that occur as knockers in the Mineoka Ophiolite Belt in the Boso Peninsula, central Japan, were analyzed. The aim was to understand the incorporation processes of blocks of metamorphic and plutonic rocks with an arc signature into the serpentinite mélange of the Mineoka Ophiolite Belt in relation to changes in metamorphic conditions during emplacement. Several stages of deformation during retrogressive metamorphism were identified: the first faulting stage had two substage shearing events (mylonitization) under ductile conditions inside the crystalline blocks in relatively deeper levels; and the second stage had brittle faulting and brecciation along the boundaries between the host serpentinite bodies in relatively shallower levels (zeolite facies). The first deformation occurred during uplift before emplacement. The blocks were intensively sheared by the first deformation event, and developed numerous shear planes with spacing of a few centimeters. The displacement and width of each shear plane were a few centimeters and a few millimeters, respectively, at most. In contrast, the fault zone of the second shearing stage reached a few meters in width and developed during emplacement of the Mineoka Ophiolite. Both stages occurred under a right-lateral transpressional regime, in which thrust-faulting was associated with strike-slip faulting. Such displacement on an outcrop scale is consistent with the present tectonics of the Mineoka Belt. This implies that the same tectonic stress has been operating in the Boso trench–trench–trench-type triple junction area in the northwest corner of the Pacific since the emplacement of the Mineoka Ophiolite. The Mineoka Ophiolite Belt must have worked as a forearc sliver fault during the formation of a Neogene accretionary prism further south.  相似文献   
5.
合浦盆地——中国南方扭性盆地模式   总被引:2,自引:1,他引:2       下载免费PDF全文
严俊君  张家骅 《地球科学》1994,19(2):194-200
位于广西南部的合浦盆地是中、新生代发育的小型沉积盆地,从该区的区域构造特征及大量地震资料揭示的盆地结构构造特征分析认为,合浦盆地的形成和发展始终受到区域性力偶的控制,表现出明显的张扭作用特征,后期(第三纪)受到压扭作用的强烈改造,合浦盆地这一发育特征在相当程度上反映了中国南方众多沉积盆地的共同特点。  相似文献   
6.
东昆仑山南缘大型转换挤压构造带和斜向俯冲作用   总被引:28,自引:5,他引:23  
东昆仑地体和巴颜喀拉--松潘甘孜地体之间的会聚边界是一条位于东昆仑南缘的大型转换挤压构造带。研究表明该带的东段(阿尼玛卿段)和西段(东-西大滩段)构造特征不同,阿尼玛卿段的构造以印支期具往南西造山极性的逆冲叠覆岩片和新生代脆性左行走滑构造为特征,东-西大滩段是由220Ma形成的EW向韧性左行走滑剪切带及两则伴生的挤压褶皱断裂带组成,韧性变形持续至20Ma,之后表现为脆性左行走滑构造再活动。因此,东昆仑南缘大型会聚带是一条由东段的“收缩挤压”为主向西段的“转换挤压”逐渐过度的特殊复杂的构造带,它的形成与巴颜喀拉--松潘甘孜地体往NE方向斜向俯冲于东昆仑地体之下有关。  相似文献   
7.
New microstructural data on the mylonites from the well‐exposed Palmi shear zone (southern Calabria) are presented with the aim to shed light on both the kinematics and the geometry of the southwestern branch of the Alpine belt during Eocene. In the study area, located between the Sardinia–Corsica block and the Calabria–Peloritani terrane, previous large‐scale geodynamic reconstructions suggest the presence of strike–slip or transform fault zones dissecting the southwestern branch of the Alpine belt. However, there are no field data supporting the occurrence of these structures. This paper uses vorticity analysis technique based on the aspect ratio and the long axis orientation of rigid porphyroclasts in mylonitic marbles and mylonitic granitoids, to estimate the contribution of pure and simple shear of deformation during the movement of the Palmi shear zone. Porphyroclasts aspect ratio and orientation were measured on thin sections using image analysis. Estimates of the vorticity number, Wm, indicate that the Palmi shear zone recorded general shear with a contribution of pure shear of c. 65%. Then, the Palmi shear zone can be interpreted as a segment of a left‐lateral transpressive bend along the southern termination of the Eocene Alpine front. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
8.
Mélanges occur as discontinuous, mappable, units along an extensive N–S-trending, steeply dipping zone of distributed shear in metamorphic complexes along the coast of central Chile. Large mélange zones, from north to south, near Chañaral, Los Vilos, Pichilemu, and Chiloé Island, contain variations in lithologic and structural detail, but are consistent in exhibiting cross-cutting fabric features indicating a progressive transition from earlier ductile to more brittle deformation. In the Infiernillo mélange near Pichilemu, Permian to Early Triassic, sub-horizontal schistosity planes of the Western Series schist are disrupted, incorporated into, and uplifted along high-angle, N–S- to NNE–SSW-trending brittle–ductile shears. Mylonitic and cataclastic zones within the mélange matrix indicate active lateral shear during cumulative exhumation from depths exceeding 12 km in some areas. Exotic lithologies, such as Carboniferous mafic amphibolite and blueschist, formed during earlier Gondwanide subduction, match well with similar rocks in the Bahia Mansa to Los Pabilos region 750 km to the south, suggesting possible dextral offset. The development of the Middle to Late Triassic, N–S=trending, near-vertical shear zones formed weaknesses in the crust facilitating later fault localization, gravitational collapse, and subduction erosion along the continental margin. The length and linearity of this zone of lateral movement, coincident with a general hiatus of regional arc magmatism during the Middle to Late Triassic, is consistent with large-scale dextral transpression, or possible transform movement, during highly oblique NNE–SSW convergence along the pre-Andean (Gondwana) margin. The resultant margin parallel N–S-trending shear planes may be exploited by seismically active faults along the present coastal area of Chile. The palaeo-tectonic setting during the transitional period between earlier Gondwanide (Devonian to Permian) and later Andean (Late Jurassic to present) subduction may have had some similarity to the presently active San Andreas transform system of California.  相似文献   
9.
10.
The Chaman left‐lateral strike‐slip fault bounds the rigid Indian plate boundary at the western end of the Himalayan‐Tibetan orogen and is marked by contrasting topographic relief. Deformed landforms along the fault provide an excellent record for understanding this actively evolving intra‐continental strike‐slip fault. The geomorphic response of an active transpessional stretch of the Chaman fault was studied using digital elevation model (DEM) data integrated with Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Visible and Near Infrared/Short Wave Infrared (VNIR/SWIR) and images from GeoEye‐1. Geologic and geomorphic mapping helped in reconstructing the Late Quaternary landscape history of this transpessional strand of the Chaman strike‐slip fault and the associated Spinatizha thrust fault in western Pakistan. Topographic analysis of a part of the transpression (the thrust bounded Roghani ridge) revealed northward growth of the Spinatizha fault with the presence of three water gaps and two corresponding wind gaps. Geomorphic indices including stream length‐gradient index, mountain front sinuosity, valley floor width to valley height ratios, and entrenchment of recent alluvial fan deposits were used to define the lateral growth and direction of propagation of the Spinatizha fault. Left‐lateral displacement along Chaman fault and uplift along the Spinatizha fault was defined using topographic analysis of the Roghani ridge and geomorphic mapping of an impressive alluvial fan, the Bostankaul fan. The landforms and structures record slip partitioning along the Indian plate boundary, and account for the convergence resulting from the difference in the Chaman fault azimuth and orientation of the velocity vector of the Indian plate. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号