首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  国内免费   2篇
地球物理   4篇
地质学   4篇
自然地理   1篇
  2021年   1篇
  2020年   1篇
  2013年   2篇
  2011年   1篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  1993年   1篇
排序方式: 共有9条查询结果,搜索用时 31 毫秒
1
1.
《Geodinamica Acta》2013,26(1-3):29-40
In the Tertiary Basin of Piedmont (Northern Italy) a 100-150 m thick Messinian sedimentary succession crops out, composed of pre-evaporitic clays, gypsum beds and post-evaporitic lacustrine-marine fine-grained sediments. In the Monferrato area the thickness of the evaporite sequence is highly variable (0-140 m) due to an important erosion surface formed at the end of the evaporite cycle and carved in the gypsum beds. Epigenic caves probably formed during this short intra-Messinian phase of emersion. Cave sediments contain benthonic and planctonic foraminiferal associations ranging in age from Burdigalian to Upper Pliocene. These sediments have probably been deposited in recent times, although it cannot be completely ruled out that they accumulated in caves developed in Upper Messinian times. The formation of the most important caves of this area probably started at the end of the Messinian under epigenic conditions. Possibly, those inherited caves enlarged slowly during the Quaternary in an intrastratal and confined hypogene karst system.  相似文献   
2.
Baiyun Cave in Naigu Shilin,Yunnan Karst,China   总被引:1,自引:3,他引:1  
The Baiyun cave is a 380 m long karst cave in the Naigu Shilin, situated 70 km southeast of Kunming, Yunnan Province, China. The prevailing orientations of the cave passages are N110°-120°E and N0°-10°W and those of the fissures in the cave are N30°-40°W and N20°-30°W. The cave is developed in the thick-bedded Lower Permian Qixia Formation. The cave has an active water flow and is currently at the near water-table stage. There are large amounts of different infills of cave sediments. The cave shows different stages of paragenesis. The palaeomagnetic analysis of cave sediments shows that their ages are younger than 780 ka B.P. (the Brunhes Chron). The upper part of the sampled profile belongs to the reverse Blake event (112.3-117.9 ka B.P.). The formation of the Baiyun cave is directly connected with the development of the Naigu Shilin. The formation of karst underground and surface features depends on the regional tectonic deformation and the Cenozoic extension of the study area.  相似文献   
3.
The maze caves of the Northern Pennines are rectilinear joint-controlled networks of predominantly tall vertical rifts developed on one level towards the top of a ~20 m thick limestone bed; they were all intersected by underground mines and have no relationship to the present landscape. Passage walls commonly have large, non-directional scallops; speleothems are uncommon. The caves were previously identified as hypogene in origin, i.e. formed by groundwater ascending from depth, but reassessment of their origin using published data shows that they lack diagnostic hypogene features (rising wall channels, ceiling channels, ceiling cupolas and dome-pits), and the low permeability strata above and below the limestone bed greatly restrict vertical groundwater flow through the caves. Instead the maze caves were dissolved by the sulphuric acid released by oxidation of iron sulphides (and perhaps chalcopyrite) in the mineralized veins adjacent to all these caves; passage sizes decrease away from the veins and gypsum encrusts the walls of one cave. The maze caves were not formed by vertical groundwater flow, and dissolution was focussed in a relatively small area of limestone beneath an impermeable confining layer. The caves began to form when river incision due to the probably Late Cenozoic uplift of northern England exposed the iron sulphides to weathering and oxidation. The process that formed the maze caves is here termed supergene sulphuric acid speleogenesis, because generation of the acidity was due to near-surface supergene sulphide oxidation, and differentiated from hypogene sulphuric acid speleogenesis, where the source is at depth beneath the cave. To clarify usage of the term hypogene, it should be restricted to Palmer's geochemical definition (Speleogenesis: Evolution of Karst Aquifers, eds Klimchouk et al., National Speleological Society: Huntsville, AL, 2000; 77–90): dissolution by a deep-seated source of acidity. Caves dissolved by ascending groundwater containing carbonic acid with a near-surface origin, e.g. on the rising limb of a phreatic loop, are better identified as epigene. © 2020 John Wiley & Sons Ltd  相似文献   
4.
Yunnan is famous for its attractive karst landscapes especially shilins, fengcong and fenglin. The development of caves beneath the shilins in the vicinity of Lunan is closely connected with the formation of shilins. Most of the waters percolating through shilins run through the caves beneath them and are responsible for their formation. The study of cave speleogenesis deepens knowledge about both the development of shilins and karst structure. In the vicinity of the Lunan Shilin, speleological, morphological and structural geological studies of four karst caves have been accomplished. At Puzhehei, Qiubei, which is characterised by numerous fenglin, fengcong and caves, speleological and morphological studies have been performed. Cave sediments for paleomagnetic analyses have been taken from all studied areas (samples CH 1-9). Karst caves in SE Yunnan are probably much older than the age of the cave sediments (<780,000 years B.P.). The studied areas are located in the vicinity of the Xiaojiang fault (N-S  相似文献   
5.
Bungonia Caves are the result of three distinct phases of speleogenesis. The first, Late Cretaceous phase is characterised by the development of horizontal passages close to the plateau surface. Caves developed in the lower limestone during this phase probably drained southward to risings in Becks Gully. The second, Palaeocene phase resulted in the development of dolines and large dynamic phreatic conduits. Caves extended to depths approximating the level of the Efflux and drainage from caves in the lower limestone was captured by the caves in the middle limestone, rising above the level of the Efflux. The second phase ended when the caves were filled with laminated clays, blocking underground drainage, and the surface was buried by quartz‐rich fluvial sediments prior to the Eocene. The third, and continuing phase, which began in the Late Tertiary, is characterised by the development of vadose shafts and by the removal of sediment deposited following the second phase.  相似文献   
6.
Very extensive cave systems are developed in Precambrian Una Group carbonates in the Campo Formoso area, eastern Brazil. In contrast, the area is largely devoid of significant surface karst landforms, as would be expected given its semi‐arid climate. The caves in the area display many morphological features characteristic of deep‐seated hypogenic caves, such as lack of relationship with the surface, ramiform/network pattern, abrupt variations of passage cross‐sections and absence of fluvial sediments, but do not show evidence of vertical passages marking the ascending path of acidic water nor present extensive gypsum or acid clay mineral deposits. Hydrochemical analyses of present‐day ground water indicate that oxidation of bedrock sulphide is an active process, and sulphuric acid may be the main agent driving carbonate dissolution in the area. A shallow mode of speleogenesis is thus proposed, in which sulphuric acid produced through the oxidation of sulphide beds within the carbonates controls cave initiation and development. Moreover, the geological situation of the area in an ancient stable passive margin precludes the possibility of deep‐seated sources of acidity. Under dry climate, due to the absence of recharge, solutional landforms will be largely subdued in the surface. Hypogenic processes, if present, are likely to predominate, producing a landscape characterized by a marked disparity in the comparative degree of development between surface and underground landforms. Rates of karst landform development have traditionally been analysed through a climatic perspective, runoff being the main controlling factor in promoting karst development. This view needs to be reassessed in the light of the growing awareness of the importance of climate‐independent processes related to hypogenic sources of acidity. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
7.
The St. Paul karst (Palawan, Philippines) is a tropical coastal karst, consisting of towers, cones, huge depressions and large caves. This area hosts the Puerto Princesa Subterranean River (PPSR, 24 km long), whose main entrance is a large spring along the coast and which is one of the largest cave complexes in eastern Asia. A geomorphological study performed by several field surveys and a morphometric analysis of the digital terrain model (DTM) and 3D cave models, allowed formulation of a first evolutionary framework of the karst system. The DTM was extracted from maps and aerial photographs in order to find different generations of ‘relict’ landforms, through the morphometric analysis of topographic surface and karst landforms. Several features suggest a long and multi‐stage evolution of the karst, whose age ranges from Pliocene to present. The southern and northern sectors of the area differ in their altimetric distribution of caves. In the southern sector, some large caves lie between 300 and 400 m asl and were part of an ancient system that developed at the base level of a past river network. In the northern sector, some mainly vadose caves occur, with a phreatic level at 120–130 m asl. An important phase of base‐level cave development is well documented in the inactive passages of PPSR at 50–80 m asl. Morphological features, such as horizontal solution passages and terraced deposits, suggest a phase of stillstand of the base level, which is recorded in the topography as low‐relief surfaces at 40–50 m asl. The age of this phase is probably Early Pleistocene, on the basis of assumed uplift rates. The more recent caves are still active, being located at the current sea level, but they show more than one cycle of flooding and dewatering (with calcite deposition). In the PPSR, several morphologic features, such as two main water level notches at +12·4 and +7·7 m asl and terraced alluvial deposits, suggest that the lower and active level passed through more than two high‐stands of sea level and so it could have formed throughout most of the Middle‐Late Pleistocene. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
8.
Abstract

The cave system is situated north of Lake Thun, in the Helvetic border chain. The overall geology is simple: the slightly dipping (15–25° towards the southeast) strata are interrupted by a NE-SW trending normal fault with a throw of 150 m in the NE and about 500 m in the SW. Since a part of the region is covered by flysch, the caves are the only way to observe the geological setting of the underlying Cretaceous and Eocene series. We show that observations in caves may yield valuable information about the onset of the tectonic movements: in particular, observations in the Barenkluft region clearly demonstrate that the beginning of préalpine extension had already begun in the Upper Cretaceous, and that this normal fault has been inverted later during Alpine compression. We also illustrate the influence of tectonic stress and strain upon karstification. The Alpine tectonic phases, with alternating compression and extension, contributed to the development of different karstogenetic levels. Tectonic strains opened and possibly closed some fractures, allowing (or preventing) water to flow through parts of the karst massive. The structural setting, defining the overall geometry of the limestone bed, played an important role in the development of the various phases of the system. Most of the conduits appear to belong to old, deep phreatic systems. Tectonics is only one of a number of factors controlling karstification. Together with lithology, it represents the geological control. Geomorphological factors (mainly spring and catchment positions, but also erosion of the flysch cover), as well as bioclimatical factors (quantity and physico-chemical characteristics of water), and hydrodynamics and transport processes can play a significant role on the genesis of karst systems. © 1999 Éditions scientifiques et médicales Elsevier SAS  相似文献   
9.
Deposits within caves are often used to interpret past landscape evolution and climate conditions. However, cave passage shapes also preserve information about past conditions. Despite the usefulness of passage shape, no previous models simulate cave cross-section evolution in a realistic manner. Here we develop a model for evolving cave passage cross-sections using a shear stress estimation algorithm and a shear stress erosion rule. Our model qualitatively duplicates observed cave passage shapes so long as erosion rates vary with shear stress, as in the case of transport limited dissolution or mechanical erosion. This result provides further evidence that erosion rates within caves are not typically limited by surface reaction rates, even though current speleogenesis models predict surface-rate limitation under most turbulent flow conditions. By adding sediment transport and alluviation to the model we successfully simulate paragenetic channels. Simulations duplicate the hypothesized dynamics of paragenesis, whereby: 1) the cross-section of a phreatic passage grows until shear stress is sufficiently reduced that alluviation occurs, 2) the floor of the passage becomes armored and erosion continues on the ceiling and walls, 3) negative feedback produces an equilibrium cross-sectional area such that shear stress is sufficient to transport incoming sediment. We derive an approximate scaling relationship that indicates that equilibrium paragenetic channel width scales with the square root of discharge, and weakly with the inverse of sediment supply. Simulations confirm this relationship and show that erosion mechanism, sediment size, and roughness are secondary controls. The inverse scaling of width with sediment supply in paragenetic channels contrasts with surface bedrock channels, which respond to larger sediment supplies by widening. Our model provides a first step in simulating cave cross-section evolution and points to the need for a better understanding of the dominant erosion mechanisms in soluble bedrock channels. © 2020 John Wiley & Sons, Ltd.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号