首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108篇
  免费   15篇
  国内免费   35篇
测绘学   1篇
大气科学   2篇
地球物理   21篇
地质学   97篇
海洋学   28篇
综合类   3篇
自然地理   6篇
  2023年   3篇
  2022年   1篇
  2021年   7篇
  2020年   7篇
  2019年   4篇
  2018年   3篇
  2017年   5篇
  2016年   8篇
  2015年   6篇
  2014年   11篇
  2013年   9篇
  2012年   1篇
  2011年   6篇
  2010年   8篇
  2009年   9篇
  2008年   11篇
  2007年   9篇
  2006年   9篇
  2005年   8篇
  2004年   4篇
  2003年   3篇
  2002年   4篇
  2001年   2篇
  2000年   5篇
  1999年   5篇
  1997年   3篇
  1996年   3篇
  1995年   2篇
  1987年   1篇
  1985年   1篇
排序方式: 共有158条查询结果,搜索用时 85 毫秒
1.
The evaporite-cored Hoodoo Dome on southern Ellef Ringnes Island, Sverdrup Basin, was examined to improve the understanding of its structural geological history in relation to hydrocarbon migration. Data from geological mapping, reflection seismic, thermal maturity and detrital apatite (U–Th)/He cooling ages are presented. Five stages of diapirism are interpreted from Jurassic to Recent times:1. 180 to 163 Ma (pre-Deer Bay Formation; development of a diapir with a circular map pattern).2. 163 to 133 Ma (Deer Bay to lower Isachsen formations; development of salt wings).3. 115 to 94 Ma (Christopher and Hassel formations; ongoing diapirism and development of an oval map pattern)4. 79 Ma (Kanguk Formation; reactivation of the central diapir).5. 42 Ma to 65 Ma (Eurekan Orogeny; tightening of the anticline).During phase1, the Hoodoo diapir was circular. During phase 2, salt wings formed along its margin. During phase 3, the Hoodoo Dome geometry evolved into a much larger, elongate, doubly plunging anticline. Phase 4 is inferred from thermochronology data as indicated by a cluster of cooling ages, but the extent of motion during that time is unknown. During Phase 5 the dome was tightened creating approximately 700 m of structural relief. Denudation since the end of the Eurekan Orogeny is estimated to be about 600 m.A one dimensional burial history model predicts hydrocarbon generation from Middle and Late Triassic source rocks between 140 and 66 Ma, with majority of hydrocarbon expulsion between 117 and 79 Ma. Hydrocarbon generation post-dates salt wing formation, so that this trap could host natural gas expelled from Triassic source rocks.  相似文献   
2.
南海南部陆缘蕴藏着非常丰富的油气资源。为了解南海南部陆缘流体活动系统以及与油气藏之间的关系,以高精度2D地震资料为基础,对南海南部陆缘流体活动系统的类型、地震反射特征、以及对油气成藏的意义开展了研究。在南海南部陆缘发现了多种流体活动系统,包括:泥底辟/泥火山、气烟囱、管状通道、与构造断层相关的流体活动系统。这些流体活动系统具有不同的地震反射特征,常常出现含气强振幅异常带、弱振幅杂乱反射带以及"下拉"或者"上拱"地震反射形态等流体活动系统的标志特征。流体活动系统受到构造运动和沉积因素的影响,并且与深部高温高压塑性流体密切相关,流体活动系统优先发育在地层薄弱部位。流体活动系统及所伴生的断裂和裂隙常常作为油气富集区的运输通道;并且流体活动系统所运移的强溶蚀性流体和深部热液流体有利于油气储层的形成,特别是对于碳酸盐岩储层的改造尤为明显。因此,流体活动系统不仅能作为油气运移通道,也可以改善储层,对油气成藏具有重要意义。  相似文献   
3.
Increased oil and gas exploration activity has led to a detailed investigation of the continental shelf and adjacent slope regions of Mahanadi, Krishna–Godavari (KG) and Cauvery basins, which are promising petroliferous basins along the eastern continental margin of India. In this paper, we analyze the high resolution sparker, subbottom profiler and multibeam data in KG offshore basin to understand the shallow structures and shallow deposits for gas hydrate exploration. We identified and mapped prominent positive topographic features in the bathymetry data. These mounds show fluid/gas migration features such as acoustic voids, acoustic chimneys, and acoustic turbid layers. It is interesting to note that drilling/coring onboard JOIDES in the vicinity of the mounds show the presence of thick accumulation of subsurface gas hydrate. Further, geological and geochemical study of long sediment cores collected onboard Marion Dufresne in the vicinity of the mounds and sedimentary ridges shows the imprints of paleo-expulsion of methane and sulfidic fluid from the seafloor.  相似文献   
4.
Rock salt is approximately 1000 times more soluble than limestone and thus displays high rates of geomorphic evolution. Cave stream channel profiles and downcutting rates were studied in the Mount Sedom salt diapir, Dead Sea rift valley, Israel. Although the area is very arid (mean annual rainfall ≈ 50 mm), the diapir contains extensive karst systems of Holocene age. In the standard cave profile a vertical shaft at the upstream end diverts water from a surface channel in anhydrite or clastic cap rocks into the subsurface route in the salt. Mass balance calculations in a sample cave passage yielded downcutting rates of 0–2 mm s?1 during peak flood conditions, or about eight orders of magnitude higher than reported rates in any limestone cave streams. However, in the arid climate of Mount Sedom floods have a low recurrence interval with the consequence that long-term mean downcutting rates are lower: an average rate of 8·8 mm a?1 was measured for the period 1986–1991 in the same sample passage. Quite independently, long-term mean rates of 6·2mm a?1 are deduced from 14C ages of driftwood found in upper levels of 12 cave passages. These are at least three orders of magnitude higher than rates established for limestone caves. Salt cave passages develop in two main stages: (1) an early stage characterized by high downcutting rates into the rock salt bed, and steep passage gradients; (2) a mature stage characterized by lower downcutting rates, with establishment of a subhorizontal stream bed armoured with alluvial detritus. In this mature stage downcutting rates are controlled by the uplift rate of the Mount Sedom diapir and changes of the level of the Dead Sea. Passages may also aggrade. These fast-developing salt stream channels may serve as full-scale models for slower developing systems such as limestone canyons.  相似文献   
5.
经过对"探宝号"调查船在2001年8月在南海东北部陆坡及台湾南部恒春海脊海域采集的多道地震剖面资料进行的地震反射波数据分析、研究和解释,结果表明:(1)南海东北部陆坡段区域和台湾南部恒春海脊海域地震剖面上均显示有被作为天然气水合物存在标志的BSR,但两区域构造成因、形式和相关地质环境的不同造成了此两处的天然气水合物成因及过程的不同.(2)南海东北部陆坡区域的水合物形成与该区广泛发育的断裂带、滑塌构造体及其所形成的压力场屏蔽环境有关,而台湾南部恒春海脊海域的天然气水合物的形成则与马尼拉海沟俯冲带相关的逆冲推覆构造、增生楔等及其所对应的海底流体疏导体系有关.(3)南海陆缘区域广泛发育有各种断裂带、滑塌构造体、泥底辟、俯冲带、增生楔等,且温压环境合适,是天然气水合物矿藏极有可能广泛分布的区域.  相似文献   
6.
兰坪金顶铅锌矿床泥底辟流体成矿特征初探   总被引:2,自引:0,他引:2  
兰坪金顶铅锌矿床的成矿过程与油气的生成有许多相似之处,泥底辟构造在金顶铅锌矿床的成矿过程中起着极为重要的作用。首先,随着泥底辟的上侵,塑性泥流夹带大量气体到构造圈闭中释放压力,扩大成矿空间;其次,流体的去气作用在构造圈闭中进行一系列的强改造活动,进而促使铅锌矿体的形成。文章通过对金顶铅锌矿床形成有关的泥底辟流体的来源、流体形成原因、流体在张性-挤压走滑盆地阶段的演化及金顶铅锌矿床成矿的泥底辟流体特征的分析,认为兰坪金顶铅锌矿床的形成与泥底辟构造密切相关,该矿床具泥底辟流体的成矿特征。  相似文献   
7.
We model the evolution of a salt diapir during sedimentation and study how deposition and salt movement affect stresses close to the diapir. We model the salt as a solid visco-plastic material and the sediments as a poro-elastoplastic material, using a generalized Modified Cam Clay model. The salt flows because ongoing sedimentation increases the average density within the overburden sediments, pressurizing the salt. Stresses rotate near a salt diapir, such that the maximum principal stress is perpendicular to the contact with the salt. The minimum principal stress is in the circumferential direction, and drops near the salt. The mean stress increases near the upper parts of the diapir, leading to a porosity that is lower than predicted for uniaxial burial at the same depth. We built this axisymmetric model within the large-strain finite-element program Elfen. Our results highlight the fact that forward modeling can provide a detailed understanding of the stress history of mudrocks close to salt diapirs; such an understanding is critical for predicting stress, porosity, and pore pressure in salt systems.  相似文献   
8.
Basalt–basaltic andesite (<55 wt % SiO2) and dacite–rhyolite(66–74 wt % SiO2) are the predominant eruptive productsin the Sumisu caldera volcano, Izu–Bonin arc, Japan. Themost magnesian basalt (8·5% MgO), as well as some ofthe other basalts, has a low Zr content (20–25 ppm), andcannot yield basalts with higher Zr contents (29–40 ppm)through fractionation and/or assimilation. The high- and low-Zrbasalts have different phenocryst assemblages, olivine, plagioclaseand pyroxene phenocryst chemistries, REE (rare earth element)patterns, and fluid-mobile element/immobile element ratios.Estimated primary olivine compositions are more magnesian (>Fo91)in the low-Zr basalts compared with those in high-Zr basalts(<Fo89). The low-Zr basalts contain up to 11 vol. % augite,but many high-Zr basalts are free of augite, which appears onlyin their more differentiated products. The low-Zr basalts areconsidered to be hydrous magmas in which olivine crystallizesfirst followed by augite and plagioclase, whereas the high-Zrbasalts are dry. The low-Zr basalts have higher U/Th ratiosthan the high-Zr basalts. We suggest that both dry and wet primarybasalts existed in the Sumisu magmatic system, each having differenttrace element concentrations, mineral assemblages and mineralchemistry. The lower contents of Zr and light REE and magnesianprimary olivines in the wet basalts could have resulted froma higher degree of partial melting (20%) of a hydrous sourcemantle compared with 10% melting of a dry source mantle. TheSr, Nd and Pb isotope compositions of the wet and dry basaltsare similar and are limited in range. These lines of evidenceindicate that a mantle diapir model might be applicable to satisfythe configuration of such a mantle source region beneath a singlevolcanic system such as Sumisu. KEY WORDS: degree of melting; hot fingers; isotopes; mantle diapir; mantle wedge  相似文献   
9.
Potash in a salt mushroom at Hormoz Island, Hormoz Strait, Iran   总被引:2,自引:0,他引:2  
Increasing volumes of potash are currently being discovered in a cluster of diapirs of Hormoz (formerly Hormuz) salt near Bandar Abbas, Iran. Most of the potash beds studied so far occur in complex recumbent folds in a salt mountain that would be difficult to exploit safely. However, Holocene marine erosion removed any salt mountains from a sub-group of near-shore Zagros diapirs and exposed their deeper structural levels. Even though these diapirs are still active, their potash deposits are likely more tractable to safe exploitation than in a salt mountain — as we make clear here for Hormoz Island.Geochemical surveys on Hormoz Island reveal two separate potash anomalies that are valuable pseudo-stratigraphic markers. Integrating field measurements of the attitudes of bedding with lineaments on air photos suggests that Hormoz Island consists of a mature bell- or plume-shaped mushroom diapir with potash beds wound around a toroidal axis of rotation near current exposure levels.2D numerical models simulate the salt mushroom on Hormoz Island and its internal circulation. They also suggest that the diapir has a wide overhand above a narrow stem in this gas-rich region. We use the mushroom diapir model to outline a regional exploration strategy that has the potential of influencing the world potash market thereafter.  相似文献   
10.
Salt tectonics in the Eastern Persian Gulf (Iran) is linked to a unique salt‐bearing system involving two overlapping ‘autochthonous’ mobile source layers, the Ediacaran–Early Cambrian Hormuz Salt and the Late Oligocene–Early Miocene Fars Salt. Interpretations of reflection seismic profiles and sequential cross‐section restorations are presented to decipher the evolution of salt structures from the two source layers and their kinematic interaction on the style of salt flow. Seismic interpretations illustrate that the Hormuz and Fars salts started flowing in the Early Palaeozoic (likely Cambrian) and Early Miocene, respectively, shortly after their deposition. Differential sedimentary loading (downbuilding) and subsalt basement faults initiated and localized the flow of the Hormuz Salt and the related salt structures. The resultant diapirs grew by passive diapirism until Late Cretaceous, whereas the pillows became inactive during the Mesozoic after a progressive decline of growth in the Late Palaeozoic. The diapirs and pillows were then subjected to a Palaeocene–Eocene contractional deformation event, which squeezed the diapirs. The consequence was significant salt extrusion, leading to the development of allochthonous salt sheets and wings. Subsequent rise of the Hormuz Salt occurred in wider salt stocks and secondary salt walls by coeval passive diapirism and tectonic shortening since Late Oligocene. Evacuation and diapirism of the Fars Salt was driven mainly by differential sedimentary loading in annular and elongate minibasins overlying the salt and locally by downslope gliding around pre‐existing stocks of the Hormuz Salt. At earlier stages, the Fars Salt flowed not only towards the pre‐existing Hormuz stocks but also away from them to initiate ring‐like salt walls and anticlines around some of the stocks. Subsequently, once primary welds developed around these stocks, the Fars Salt flowed outwards to source the peripheral salt walls. Our results reveal that evolving pre‐existing salt structures from an older source layer have triggered the flow of a younger salt layer and controlled the resulting salt structures. This interaction complicates the flow direction of the younger salt layer, the geometry and spatial distribution of its structures, as well as minibasin depocentre migration through time. Even though dealing with a unique case of two ‘autochthonous’ mobile salt layers, this work may also provide constraints on our understanding of the kinematics of salt flow and diapirism in other salt basins having significant ‘allochthonous’ salt that is coevally affected by deformation of the deeper autochthonous salt layer and related structures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号