首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
  国内免费   1篇
地球物理   2篇
地质学   4篇
  2023年   1篇
  2020年   1篇
  2019年   1篇
  2007年   1篇
  1993年   1篇
  1991年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Isocon analysis of migmatization in the Front Range, Colorado, USA   总被引:2,自引:0,他引:2  
Isocon analysis has been applied to five sets of leucosome, mafic selvages and immediately adjacent mesosome in the migmatites from a 15-m outcrop in the Colorado Front Range. The results show: (i) mafic selvages formed from the adjacent mesosome by loss of felsic components and therefore the mesosomes are indeed palaeosomes or protoliths; (ii) the leucosomes did not form in a closed system from the palaeosome (in which case the material lost from the palaeosome during selvage formation would become the leucosome). The observed volumes and compositions of leucosomes require that the present leucosome must contain some material in addition to the felsic components lost from the selvages. The materials that must be added are leucotonalitic to granitic in composition, varying greatly in K/(Na + Ca) ratio. The trend in leucosome composition can be reproduced by assuming that a metasomatic exchange, KNa + Ca, modified originally leucotonalitic leucosomes to more K-rich compositions. These leucosomes most likely formed by injection of silicate melts accompanied, or followed, by metasomatism. The trend of leucosome compositions in this study reflects the general trend in the leucosome compositions which have been published from other areas, indicating that the proposed mechanism can be applicable to other regional migmatites.  相似文献   
2.
蛇尾剪切带中糜棱岩的质量平衡分析表明:(1)以Al_2O_3守恒为限制条件,该剪切带损失了10%土的质量和体积,糜棱岩类有Na_2O,Zr,Sr的获得;SiO_2,TiO_2,FeO,Fe_2O_3,MgO,MnO,CaO,K_2O及Co,Ni,V,Cr,Cu,Y则损失了;(2)从初糜棱岩-糜棱岩,初糜棱岩-超糜棱岩和糜棱岩-超糜棱岩得出的质量等比线显示,糜棱岩类之间没有明显的质量和体积损失。糜棱岩组分的得失主要发生在初糜棱岩阶段,同初糜棱岩相比,糜棱岩、超糜棱岩有CaO的获得,FeO,MgO,TiO_2,Cr,Co,V,Y微弱的获得,Na_2O则有轻微的损失。  相似文献   
3.
Yasushi  Mori  Tadao  Nishiyama  Takeru  Yanagi 《Island Arc》2007,16(1):28-39
Abstract   Reaction zones of 0.5–10.0 m thick are commonly observed between serpentinite and pelitic schist in the Nishisonogi metamorphic rocks, Kyushu, Japan. Each reaction zone consists of almost monomineralic or bimineralic layers of talc + carbonates, actinolite (or carbonates + quartz), chlorite, muscovite and albite from serpentinite to pelitic schist. Magnesite + quartz veins extend into the serpentinite from the talc + carbonates layer, while dolomite veins extend into the pelitic schist from the muscovite layer. These veins are filled by subhedral minerals with oriented growth features. Primary fluid inclusions yield the same homogenization temperatures (145–150°C) both in the reaction zone and in the veins, suggesting their simultaneous formation. Mass-balance calculations using the isocon method indicate that SiO2, MgO, H2O and K2O are depleted in the reaction zone relative to the protoliths. These components were probably extracted from the reaction zone as fluids during the formation of the reaction zone.  相似文献   
4.
湖南锡矿山锑矿床是目前世界上已发现的最大的锑矿床,其硅化非常发育且与矿化关系密切,根据硅化蚀变程度的强弱,从围岩到矿石大致划分为4个带:灰岩→弱硅化灰岩→强硅化灰岩→矿石。为揭示锡矿山锑矿的成矿过程及成矿流体信息,利用Isocon标准化方法,以Al_2O_3为惰性组分,对各蚀变带围岩及矿石的主、微量元素进行质量平衡计算。结果表明,热液蚀变过程中,Si、Sb、Li和Bi等大量迁入,而Ca、Mg、Na和大离子亲石元素Sr、Ba、Rb等大量迁出;成矿热液呈酸性并富硅,其中Hg、As、Au、Tl等元素含量极低,这可能是导致锡矿山锑矿床矿种单一的原因之一。稀土元素除Eu外,其他元素未发生明显的活化迁移,水岩反应并未影响原岩的稀土元素配分模式;蚀变岩及矿石中的Eu负异常可能表明成矿过程是在相对还原的环境下进行的。  相似文献   
5.
A synthesis of the geochemistry of silcretes and their host sediments in the Kalahari Desert and Cape coastal zone, using isocon comparisons, shows that silcretes in the two regions are very different. Kalahari Desert silcretes outcrop along drainage-lines and within pans, and formed by groundwater silicification of near-surface Kalahari Group sands. Silicification was approximately isovolumetric. Few elements were lost; silicon (Si) and potassium (K) were gained as microquartz precipitated in the sediment porosity and glauconite formed in the sub-oxic groundwater conditions. The low titanium (Ti) content reflects the composition of the host sands. Additional elements in the Kalahari Desert silcretes were supplied in river water and derived from weathering of silicates in basement rocks. Evaporation under an arid climate produced high-pH groundwater that mobilized and precipitated Si; this process is still occurring. In the Cape coastal zone, pedogenic silcretes cap hills and plateaus, overlying deeply weathered argillaceous bedrock. Silicification resulted from intensive weathering that destroyed the bedrock silicates, almost completely removing most elements and causing a substantial volume decrease. Some of the silica released formed a microcrystalline quartz matrix, and most Ti precipitated as anatase, so the Cape silcretes contain relatively high Ti levels. The intense weathering that formed the Cape silcretes could have occurred in the Eocene, during and after the Palaeocene-Eocene Thermal Maximum, when more acidic rainfall and high temperatures resulted in intensified silicate weathering worldwide. This could have been responsible for widespread formation of pedogenic silcretes elsewhere in Africa and around the globe. Trace element sourcing of silcrete artefacts to particular outcrops has most potential in the Cape, where differences between separate bedrock areas are reflected in the silcrete composition. In the Kalahari Desert, gains of some elements can override compositional differences of the parent material, and sourcing should be based on elements that show the least change during silicification. © 2020 John Wiley & Sons, Ltd.  相似文献   
6.
位于特提斯成矿域西段塞尔维亚Bor成矿带内的Mali Krivelj铜矿床是一大型斑岩型矿床。为揭示该矿床热液蚀变作用过程及元素迁移规律,文章对新鲜安山岩及不同蚀变带典型样品进行了微量元素分析及元素迁移质量平衡计算。研究结果表明,绢英岩化带及绿泥石-绢云母化带显示类似元素迁移规律,REE、Sr、Ba、Zr、Th、U、Ti、Co、Ni等元素显示一定程度迁出,而Rb、Cs等元素显示一定程度迁入,绿泥石-绢云母化带发育大量磁铁矿,而绢英岩化带则大量出现石英+绢云母+黄铁矿组合,这表明随着流体的持续演化,流体的还原性逐渐增强。青磐岩化带蚀变较弱,其元素迁移程度较低。研究区Cu与Cr、Rb、Ti/Sr、Rb/Ba、Cr/Zn比值等具较好的正相关性,Cu与REE、Ba、Zn、Mn、Sr等元素具有一定的负相关性,表明该矿床全岩元素迁移规律在一定程度上也能作为地球化学勘查指标为寻找斑岩矿化中心提供依据。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号