首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6647篇
  免费   886篇
  国内免费   804篇
测绘学   1732篇
大气科学   417篇
地球物理   1844篇
地质学   2675篇
海洋学   571篇
天文学   18篇
综合类   514篇
自然地理   566篇
  2024年   17篇
  2023年   63篇
  2022年   188篇
  2021年   293篇
  2020年   302篇
  2019年   321篇
  2018年   234篇
  2017年   318篇
  2016年   335篇
  2015年   331篇
  2014年   384篇
  2013年   433篇
  2012年   402篇
  2011年   391篇
  2010年   336篇
  2009年   385篇
  2008年   464篇
  2007年   439篇
  2006年   415篇
  2005年   384篇
  2004年   314篇
  2003年   272篇
  2002年   215篇
  2001年   185篇
  2000年   166篇
  1999年   129篇
  1998年   122篇
  1997年   82篇
  1996年   92篇
  1995年   56篇
  1994年   63篇
  1993年   55篇
  1992年   49篇
  1991年   19篇
  1990年   20篇
  1989年   23篇
  1988年   10篇
  1987年   5篇
  1986年   5篇
  1985年   6篇
  1984年   6篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1979年   2篇
排序方式: 共有8337条查询结果,搜索用时 31 毫秒
1.
评述了卫星重力大地测量的最新发展及其对地球科学的重大影响。为了更好地理解地球内部物理构造与海洋动力学,以及大陆,冰川和海洋的相互作用,改善现有地球重力场模型(包括精度和空间解析度)是非常重要的。IUGG等国际组织对此已经强调了很多年。最近,由德国的GFZ(GeoForschungsZentrum),美国的NASA(National Aeronautics and Space Adminitration)以及欧洲宇航局ESA(European Space Agency)开发研制了最先进的地球监测技术-SST(Satellite-to-Sateilite Tracking)。其主要特点是利用现有的GPS连续追踪新发射低轨道卫星,并由低轨道卫星对地球重力场作精密观测。已经发射和即将发射的卫星有3颗:GHAMP(Challenging Mini-Satellite Payload for Geophysical Research an Application)已经于2000年发射;GRACE(Gravity Recovery and Climate Experimert)定于2002年发射;GOCE(Gravity Field and Steady-state Ocean Cirulation Explorer)计划2004年发射,它们可以统称为重力卫星。载有SST技术的人造卫星的主要目的是获得具有前所未有的高精度和高空间解析度的全球重力场和大地水准面模型,加强人们对地球内部构造的理解并为海洋和气象研究提供更好地参考。上述3个重力卫星工作在有明显区别的不同波谱内,它们有不同的科学应用,仅有一小部分重合。所以,就应用而言它们是完全互补的。它们在地球科学中的应用将是广泛的,特别对于固体地球物理学,海洋学以及大地测量学等领域,它们将会带来革命性的变化,其意义不亚于GPS。  相似文献   
2.
Approach to Mountain Hazards in Tibet, China   总被引:1,自引:1,他引:0  
Tibet is located at the southwest boundary of China. It is the main body of the Qinghai-Tibet Plateau, the highest and the youngest plateau in the world. Owing to complicated geology, Neo-tectonic movements, geomorphology, climate and plateau environment, various mountain hazards, such as debris flow, flash flood, landslide, collapse, snow avalanche and snow drifts, are widely distributed along the Jinsha River (the upper reaches of the Yangtze River), the Nu River and the Lancang River in the east, and the Yarlungzangbo River, the Pumqu River and the Poiqu River in the south and southeast of Tibet. The distribution area of mountain hazards in Tibet is about 589,000 km^2, 49.3% of its total territory. In comparison to other mountain regions in China, mountain hazards in Tibet break out unexpectedly with tremendously large scale and endanger the traffic lines, cities and towns, farmland, grassland, mountain environment, and make more dangers to the neighboring countries, such as Nepal, India, Myanmar and Bhutan. To mitigate mountain hazards, some suggestions are proposed in this paper, such as strengthening scientific research, enhancing joint studies, hazards mitigation planning, hazards warning and forecasting, controlling the most disastrous hazards and forbidding unreasonable human exploring activities in mountain areas.  相似文献   
3.
 Satellite data offer a means of supplementing ground-based monitoring during volcanic eruptions, especially at times or locations where ground-based monitoring is difficult. Being directly and freely available several times a day, data from the advanced very high resolution radiometer (AVHRR) offers great potential for near real-time monitoring of all volcanoes across large (3000×3000 km) areas. Herein we describe techniques to detect and locate activity; estimate lava area, thermal flux, effusion rates and cumulative volume; and distinguish types of activity. Application is demonstrated using data for active lavas at Krafla, Etna, Fogo, Cerro Negro and Erebus; a pyroclastic flow at Lascar; and open vent systems at Etna and Stromboli. Automated near real-time analysis of AVHRR data could be achieved at existing, or cheap to install, receiving stations, offering a supplement to conventional monitoring methods. Received: 21 January 1997 / Accepted: 3 April 1997  相似文献   
4.
长江三峡工程地壳形变监测网络   总被引:19,自引:10,他引:9  
长江三峡工程地壳形变监测网络,采用了当今高精度GPS、INSAR空间大地测量技术,并与精密水准测量,精密重力测量,精密激光测距和峒体连续形变监测等技术相结合,构成一个空间上点、线、面结合,时间上长、中、短兼顾的高精度,高时空分辨率的地壳形变监测网络。该网络既可获取三峡库区特别是库首区区域形变场和区域应变场的动态变化,监测库区主要断层活动,为水库诱发地震预测及研究服务,又可用于气象、滑坡地质灾害监测等,该监测网络于1997年底开始建设,2001年6月建成,到目前为止,已获得大量宝贵的观测资料,必将产生显著的经济效益和社会效益。  相似文献   
5.
We designed a new seismic source model for Italy to be used as an input for country-wide probabilistic seismic hazard assessment (PSHA) in the frame of the compilation of a new national reference map.

We started off by reviewing existing models available for Italy and for other European countries, then discussed the main open issues in the current practice of seismogenic zoning.

The new model, termed ZS9, is largely based on data collected in the past 10 years, including historical earthquakes and instrumental seismicity, active faults and their seismogenic potential, and seismotectonic evidence from recent earthquakes. This information allowed us to propose new interpretations for poorly understood areas where the new data are in conflict with assumptions made in designing the previous and widely used model ZS4.

ZS9 is made out of 36 zones where earthquakes with Mw > = 5 are expected. It also assumes that earthquakes with Mw up to 5 may occur anywhere outside the seismogenic zones, although the associated probability is rather low. Special care was taken to ensure that each zone sampled a large enough number of earthquakes so that we could compute reliable earthquake production rates.

Although it was drawn following criteria that are standard practice in PSHA, ZS9 is also innovative in that every zone is characterised also by its mean seismogenic depth (the depth of the crustal volume that will presumably release future earthquakes) and predominant focal mechanism (their most likely rupture mechanism). These properties were determined using instrumental data, and only in a limited number of cases we resorted to geologic constraints and expert judgment to cope with lack of data or conflicting indications. These attributes allow ZS9 to be used with more accurate regionalized depth-dependent attenuation relations, and are ultimately expected to increase significantly the reliability of seismic hazard estimates.  相似文献   

6.
An integrated GIS-based tool (GTIS) was constructed to estimate site effects related to the earthquake hazards in the Gyeongju area of Korea. To build the GTIS for the study area, intensive site investigations and geotechnical data collections were performed and a walk-over site survey was additionally carried out to acquire surface geo-knowledge data in accordance with the procedure developed to build the GTIS. For practical applications of the GTIS used to estimate the site effects associated with the amplification of ground motion, seismic microzoning maps of the characteristic site period and the mean shear wave velocity to a depth of 30 m were created and presented as a regional synthetic strategy addressing earthquake-induced hazards. Additionally, based on one-dimensional site response analyses, various seismic microzoning maps for short- and mid-period amplification potentials were created for the study area. Case studies of seismic microzonations in the Gyeongju area verified the usefulness of the GTIS for predicting seismic hazards in the region.  相似文献   
7.
This work deals with disposal of slurries generated during the cutting and polishing processes of slabs of decorative sedimentary carbonate rocks in the north western Sicily. At present, they are used as fillers of dismantled quarries near the sawmills and, as a final step of reclamation, are covered with earth layers. In spite of such inexpensive solution, there is lack of knowledge about the composition of the waste. In order to assess if there is any threat for the environment and to suggest indications for alternative solutions, such as recycling or inactivation processes, the slurries were analysed by XR diffraction, simultaneous thermal analysis, ICP/MS, ionic chromatography, FTIR, UV-Vis, COD and TOC measurements, grain size analysis. Results indicate that the slurries can threaten the groundwater, because of the high chemical oxygen demand; furthermore they can modify the mechanism of groundwater recharge, because of their grain size distribution. Some laboratory tests show that, even in very aggressive conditions, the solid pollutants persist in the waste and slowly release into water the products of their degradation. The slurry therefore should be subjected to inactivation treatment before disposal or, alternatively, recycled as secondary raw material for a suitable process.  相似文献   
8.
Jens-Uwe Klügel   《Earth》2008,88(1-2):1-32
The paper is dedicated to the review of methods of seismic hazard analysis currently in use, analyzing the strengths and weaknesses of different approaches. The review is performed from the perspective of a user of the results of seismic hazard analysis for different applications such as the design of critical and general (non-critical) civil infrastructures, technical and financial risk analysis. A set of criteria is developed for and applied to an objective assessment of the capabilities of different analysis methods. It is demonstrated that traditional probabilistic seismic hazard analysis (PSHA) methods have significant deficiencies, thus limiting their practical applications. These deficiencies have their roots in the use of inadequate probabilistic models and insufficient understanding of modern concepts of risk analysis, as have been revealed in some recent large scale studies. These deficiencies result in the lack of ability of a correct treatment of dependencies between physical parameters and finally, in an incorrect treatment of uncertainties. As a consequence, results of PSHA studies have been found to be unrealistic in comparison with empirical information from the real world. The attempt to compensate these problems by a systematic use of expert elicitation has, so far, not resulted in any improvement of the situation. It is also shown that scenario-earthquakes developed by disaggregation from the results of a traditional PSHA may not be conservative with respect to energy conservation and should not be used for the design of critical infrastructures without validation. Because the assessment of technical as well as of financial risks associated with potential damages of earthquakes need a risk analysis, current method is based on a probabilistic approach with its unsolved deficiencies.

Traditional deterministic or scenario-based seismic hazard analysis methods provide a reliable and in general robust design basis for applications such as the design of critical infrastructures, especially with systematic sensitivity analyses based on validated phenomenological models. Deterministic seismic hazard analysis incorporates uncertainties in the safety factors. These factors are derived from experience as well as from expert judgment. Deterministic methods associated with high safety factors may lead to too conservative results, especially if applied for generally short-lived civil structures. Scenarios used in deterministic seismic hazard analysis have a clear physical basis. They are related to seismic sources discovered by geological, geomorphologic, geodetic and seismological investigations or derived from historical references. Scenario-based methods can be expanded for risk analysis applications with an extended data analysis providing the frequency of seismic events. Such an extension provides a better informed risk model that is suitable for risk-informed decision making.  相似文献   

9.
Quantitative sinkhole hazard assessments in karst areas allow calculation of the potential sinkhole risk and the performance of cost-benefit analyses. These estimations are of practical interest for planning, engineering, and insurance purposes. The sinkhole hazard assessments should include two components: the probability of occurrence of sinkholes (sinkholes/km2 year) and the severity of the sinkholes, which mainly refers to the subsidence mechanisms (progressive passive bending or catastrophic collapse) and the size of the sinkholes at the time of formation; a critical engineering design parameter. This requires the compilation of an exhaustive database on recent sinkholes, including information on the: (1) location, (2) chronology (precise date or age range), (3) size, and (4) subsidence mechanisms and rate. This work presents a hazard assessment from an alluvial evaporite karst area (0.81 km2) located in the periphery of the city of Zaragoza (Ebro River valley, NE Spain). Five sinkholes and four locations with features attributable to karstic subsidence where identified in an initial investigation phase providing a preliminary probability of occurrence of 0.14 sinkholes/km2 year (11.34% in annual probability). A trenching program conducted in a subsequent investigation phase allowed us to rule out the four probable sinkholes, reducing the probability of occurrence to 0.079 sinkholes/km2 year (6.4% in annual probability). The information on the severity indicates that collapse sinkholes 10–15 m in diameter may occur in the area. A detailed study of the deposits and deformational structures exposed by trenching in one of the sinkholes allowed us to infer a modern collapse sinkhole approximately 12 m in diameter and with a vertical throw of 8 m. This collapse structure is superimposed on a subsidence sinkhole around 80 m across that records at least 1.7 m of synsedimentary subsidence. Trenching, in combination with dating techniques, is proposed as a useful methodology to elucidate the origin of depressions with uncertain diagnosis and to gather practical information with predictive utility about particular sinkholes in alluvial karst settings: precise location, subsidence mechanisms and magnitude, and timing and rate of the subsidence episodes.  相似文献   
10.
A detailed study was carried out on a piece of land that had been struck by lightning during the violent rainstorm that raged over the Island of S?o Miguel (Azores Archipelago) in late October 2006. Temperature and gas measurements (CO2, CO, H2S and CH4) were performed in four study trenches, dug in an area of ∼3 m2, where an underground fire had been initiated by the impact with a lightning stroke, followed by the emission of a column of gases and smoke. The soil under study was originally a well-pedogenized about 80 cm thick bed, made of volcanic clayey to silty tephra fallouts and contained 5.5–9.7% of organic matter. The underground fire was monitored for one week and revealed a peak release of 404 ppm CO and 3.4% CO2 originating from a horizon located about 45 cm under the soil surface. Measurements of temperature, performed one week after the impact, indicated a maximum value of 326°C inside the soil, while 516.5°C were measured on the surface of a lava block interred about 20 cm under the surface. Subsequently, a stratigraphic and sedimentologic study proved the role of the grain-size of the soil and of the organic matter content of the different horizons of the impact area, in determining the ratio between anoxic/oxidised combustion conditions and in the progress of the process itself. It was also noticed that combustion was not total all over in the soil bed and that the process had slightly migrated toward SW during the observation period. The combustion process went on for about ten days, in spite of several other violent rainstorms, until it was artificially extinguished through the excavations made to obtain study trenches. This particular circumstance evidenced the potential natural hazard represented by this kind of atmospheric event, especially in a land where the volcanic nature of the soil may easily mislead inexperienced observers and, consequently, delay proper action.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号