首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   509篇
  免费   61篇
  国内免费   161篇
测绘学   3篇
大气科学   21篇
地球物理   68篇
地质学   430篇
海洋学   101篇
天文学   14篇
综合类   14篇
自然地理   80篇
  2024年   1篇
  2023年   4篇
  2022年   38篇
  2021年   24篇
  2020年   21篇
  2019年   41篇
  2018年   21篇
  2017年   18篇
  2016年   25篇
  2015年   34篇
  2014年   31篇
  2013年   39篇
  2012年   24篇
  2011年   24篇
  2010年   29篇
  2009年   29篇
  2008年   35篇
  2007年   28篇
  2006年   23篇
  2005年   19篇
  2004年   14篇
  2003年   20篇
  2002年   26篇
  2001年   17篇
  2000年   13篇
  1999年   13篇
  1998年   14篇
  1997年   16篇
  1996年   11篇
  1995年   8篇
  1994年   17篇
  1993年   4篇
  1992年   9篇
  1991年   2篇
  1990年   3篇
  1989年   2篇
  1988年   4篇
  1987年   1篇
  1986年   2篇
  1985年   3篇
  1984年   4篇
  1983年   9篇
  1982年   5篇
  1981年   3篇
  1980年   2篇
  1976年   1篇
排序方式: 共有731条查询结果,搜索用时 328 毫秒
1.
作为重要的土壤物理性质,膨胀性在影响土壤导水性、持水性、抗蚀性以及土壤结构的形成和发育等方面发挥着重要作用。为了探讨生物土壤结皮(BSCs)土壤的膨胀特性及其主要影响因素,针对黄土高原风沙土和黄绵土两种典型土壤,利用膨胀仪测定并比较了有、无藓结皮及其在不同因素(初始含水量、干湿循环、冻融循环、温度)下膨胀率的差异,分析了BSCs对土壤膨胀性的影响及其与环境因素和BSCs性质的关系。结果显示:风沙土上藓结皮的膨胀率为1.93%,较无结皮增加了8.65倍;而黄绵土上藓结皮的膨胀率为2.05%,与无结皮相比降低了76.68%。藓结皮的生物量和厚度与其膨胀率在风沙土上均呈线性正相关关系(P < 0.05),在黄绵土上分别呈二次函数(P=0.02)和线性正相关关系(P=0.02)。初始含水量同时影响了土壤最大膨胀率和稳定膨胀时间,影响程度风沙土远大于黄绵土(包括藓结皮和无结皮);干湿循环次数对无结皮土壤膨胀率的影响程度大于藓结皮土壤,其中风沙土和黄绵土上无结皮的膨胀率分别是50.00%~620.00%和-2.28%~10.81%,而两种土壤上藓结皮的膨胀率分别是-5.70%~10.88%和-10.24%~-21.46%;冻融循环下4种土壤的膨胀率均有不同程度的降低,降幅为0~18.54%。黄绵土无结皮的膨胀率受温度影响程度较大,50℃下黄绵土无结皮的膨胀率分别是25℃和35℃下的1.17倍和1.21倍。BSCs显著地改变了风沙土和黄绵土表层的膨胀性,其影响的程度和方向取决于土壤类型。同时,BSCs的膨胀性受含水量、温度、干湿以及冻融循环等关键因素影响。  相似文献   
2.
About 70years ago,Frenc卜卜alaeohdoglst回LL sc卜dars al卜ome and a卜road卜ave successively con-HARD de Chardin P.et al.Initiated the Quaternary ducted large amount ofwork on the Later Quaternarygeologlcal research In the >alawusu River Basin of strata(TEILHARD,1924; YUAN,1978; LI,1987;desert region of Northern China and established th,ZHENG,1989; SUN et al,1996; LI et al,1993),Salawusu Formation门EILHARD,1924).Sine,then,palaeobiology…  相似文献   
3.
Porewater nutrient dynamics during emersion and immersion were investigated during different seasons in a eutrophic intertidal sandflat of Tokyo Bay, Japan, to elucidate the role of emersion and immersion in solute transport and microbial processes. The water content in the surface sediment did not change significantly following emersion, suggesting that advective solute transport caused by water table fluctuation was negligible. The rate of change in nitrate concentration in the top 10 mm of sediments ranged from −6.6 to 4.8 μmol N l−1 bulk sed. h−1 during the whole period of emersion. Steep nutrient concentration gradients in the surface sediment generated diffusive flux of nutrients directed downwards into deeper sediments, which greatly contributed to the observed rates of change in porewater nutrient concentration for several cases. Microbial nitrate reduction within the subsurface sediment appeared to be strongly supported by the downward diffusive flux of nitrate from the surface sediment. The stimulation of estimated nitrate production rate in the subsurface layer in proportion to the emersion time indicates that oxygenation due to emersion caused changes in the sediment redox environment and affected the nitrification and/or nitrate reduction rates. The nitrate and soluble reactive phosphorus pools in the top 10 mm of sediment decreased markedly during immersion (up to 68% for nitrate and up to 44% for soluble reactive phosphorus), however, this result could not be solely explained by molecular diffusion.  相似文献   
4.
Wet atmospheric deposition of dissolved N, P and Si species is studied in well-mixed coastal ecosystem to evaluate its potential to stimulate photosynthetic activities in nutrient-depleted conditions. Our results show that, during spring, seawater is greatly depleted in major nutrients: Dissolved Inorganic Nitrogen (DIN), Dissolved Inorganic Phosphorus (DIP) and Silicic acid (Si), in parallel with an increase of phytoplanktonic biomass. In spring (March–May) and summer (June–September), wet atmospheric deposition is the predominant source (>60%, relative to riverine contribution) for nitrates and ammonium inputs to this N-limited coastal ecosystem. During winter (October–February), riverine inputs of DIN predominate (>80%) and are annually the most important source of DIP (>90%). This situation allows us to calculate the possibility for a significant contribution to primary production in May 2003, from atmospheric deposition (total input for DIN ≈300 kg km−2 month−1). Based on usual Redfield ratios and assuming that all of the atmospheric-derived N (AD-N) in rainwater is bioavailable for phytoplankton growth, we can estimate new production due to AD-N of 950 mg C m−2 month−1, during this period of depletion in the water column. During the same episode (May 2003), photosynthetic activity rate, considered as gross primary production, was estimated to approximately 30 300 mg C m−2 month−1. Calculation indicates that new photosynthetic activity due to wet atmospheric inputs of nitrogen could be up to 3%.  相似文献   
5.
This special issue is comprised of 13 papers, including this overview, and focuses on the synthesis of the Joint Global Ocean Flux Study (JGOFS) in the North Pacific which took place from 1997 through 2003. The effort was led by the JGOFS North Pacific Synthesis Group, with the aim of quantifying CO2 drawdown by physical and biological pumps in the North Pacific by identifying and studying the regional, seasonal to inter-annual variations in the key processes, and understanding their regulating mechanisms. Emphasis was placed on the similarities and differences of the biogeochemical regimes in the eastern and western subarctic Pacific. Effort was also made to address the future research directions which arose from the scientific findings during the North Pacific JGOFS process study. A brief overview of the papers from view points of CO2 drawdown by physical and biological pumps, spatial variability, and temporal variability from seasonal to decadal scales is made, followed by suggestions for the directions of future research. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
6.
7.
Dissolved titanium distributions in the Mid-Atlantic Bight   总被引:1,自引:0,他引:1  
Stephen A. Skrabal   《Marine Chemistry》2006,102(3-4):218-229
Although titanium is abundant in Earth's crust, its sources and distribution in the ocean are poorly understood. To elucidate its behavior, distributions of dissolved (< 0.2 μm) Ti were determined in surface waters and vertical profiles from the Mid-Atlantic Bight (MAB). Concentrations of Ti decreased from 390 pM at the Delaware Bay mouth to < 100 pM across the Delaware continental shelf. In vertical profiles, small increases in bottom waters suggest a possible flux of Ti from shelf sediments, consistent with previous reports of pore water enrichments of dissolved Ti in MAB sediments. Concentrations in surface waters of the outer shelf and slope ranged between 30 and 140 pM, with most values below 90 pM. Concentrations in a 1000 m vertical profile in the eastern Gulf Stream ranged between 110 and 280 pM, and showed a variable distribution attributed to the mixing of water masses in the outer MAB. A simple model of Ti sources to the MAB suggests that atmospheric deposition of dissolved Ti is comparable to net riverine contributions and therefore must be considered in applications of Ti as a tracer of oceanographic processes.  相似文献   
8.
The physical and chemical variability of the water column at subtidal station of an estuary in the Seto Inland Sea, Japan, was studied over a 24-hour period during a spring tide (tidal range ca. 2 m) in May 1995. Surface water and several depths through the water column were monitored every one and two hours, respectively. At each occasion, water temperature, salinity and dissolved oxygen concentration were measured and water samples were collected for the determination of nutrients and suspended particulate matter (SPM). Disruptive changes in the physical and chemical characteristics of the water was produced by the tidal cycle and the mixing of water masses of different origin. These changes were highly significant both spatially and temporally, yet with varying effects on physical parameters, nutrients and the different components of SPM. Significant differences in nutrient concentrations were also observed when the data-set was divided into ebb and flood components, irrespective of the depth. Nitrate and nitrite rose to 1.8 times higher during the flood. Spatial differences of SPM were less marked than those of nutrients, only particulate organic carbon (POC) being significantly higher at the surface than in the intermediate and the lower layer. Both POC and pheopigment concentrations increased markedly through the water column, being highest shortly before the lower low tide. In contrast, suspended solid (SS) content increased sharply after the lower low tide (>40 mg l−1) and this coincided with a marked decrease of the C/SS content (<20 mg g−1). The lagtime between POC and SS tidal transport was caused by particle resuspension from the exposed intertidal sediments as the tidal level rose, and particle transport selection in relation to the tidal state. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
9.
新地球观   总被引:11,自引:0,他引:11  
One of the most important achivements on science in 20th century is the new recognition on the Earth:the Earth,out of the other planets, exhibits very peculiar features because it has an extremely complex and active periphery part (surfacial layers). This periphery part is an open system sustained by inputting solar energe , which is captured , transfered and stored by life. Through the system , cyclings of matters and energe flow are driven and regulated by life activities. This system is self-equilibrated,self-controlled and far away from astrophysical and thermodynamic equilibria mainly because of life and life activities.
Development of human calture influences increasingly on流Earth's periphery system , at last , the natural biosphere that has existed for 3 billion years on the Earth's surface will inavoidably be replaced by so called "noosphere",which is man一reconstructed,man-controlled and unstable system. Thus the fate of the Earth,to a great extent,will be determined by the direction of human calture evolution.
  相似文献   
10.
The time series consisting of nonsinusoidal Natural Remanent Magnetization (NRM) and palaeoclimatic variations for the past two million years have been spectrally examined by using a new Walsh transform technique. The results show statistically significant periodicities (at 95% confidence level) of approximately 92,000 years; 43,000 years and 21,000 years in the ensemble spectra of the NRM intensity (mineralogic) variations. These NRM periodicities are remarkably close to the well-known Milankovitch cycles. The ensemble spectra of palaeoclimatic records reveal only 41,000 years statistically significant (95%) periodicity corresponding to the obliquity cycle. The study suggests that NRM variations in deep sea sediments probably are more sensitive recorders of palaeoclimatic memory than the oxygen isotope variations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号