首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   9篇
  国内免费   21篇
地球物理   4篇
地质学   74篇
海洋学   2篇
  2024年   1篇
  2021年   2篇
  2019年   2篇
  2018年   2篇
  2017年   4篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   5篇
  2008年   3篇
  2007年   7篇
  2006年   5篇
  2005年   2篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   5篇
  1998年   1篇
  1997年   4篇
  1995年   2篇
  1994年   4篇
  1993年   6篇
  1991年   3篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
排序方式: 共有80条查询结果,搜索用时 15 毫秒
1.
In the ultra-high pressure Metamorphic Kimi Complex widespread tonalitic–trondhjemitic dykes, with an intrusion age ca. 65–63 Ma, cross-cut boudins and layers of amphibolitized eclogites. Geochemical investigation proclaims the tied genetic relationship of the amphibolitized eclogites and the associated tonalitic–trondhjemitic dykes. The major and trace element contents and rare earth element patterns of the amphibolitized eclogites indicate formation of their protoliths by fractional crystallization of tholeiitic magmas in a back-arc environment. The tonalites and trondhjemites are characterized by moderate to high Sr contents (>130 ppm), and low Y (<8.2 ppm) and heavy rare earth element contents (Yb content of 0.19–0.88 ppm). The chemical composition of the tonalitic and trondhjemitic dykes are best explained by partial melting of a tholeiitic source like the amphibolitized eclogites with residual garnet and amphibole, at the base of a thickened crust during Early Tertiary subduction/accretion at the southern margins of the European continent.  相似文献   
2.
Pressure–temperature grids in the system Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O and its subsystems have been calculatedin the range 15–45 kbar and 550–900°C, usingan internally consistent thermodynamic dataset and new thermodynamicmodels for amphibole, white mica, and clinopyroxene, with thesoftware THERMOCALC. Minerals considered for the grids includegarnet, omphacite, diopside, jadeite, hornblende, actinolite,glaucophane, zoisite, lawsonite, kyanite, coesite, quartz, talc,muscovite, paragonite, biotite, chlorite, and plagioclase. Compatibilitydiagrams are used to illustrate the phase relationships in thegrids. Coesite-bearing eclogites and a whiteschist from Chinaare used to demonstrate the ability of pseudosections to modelphase relationships in natural ultrahigh-pressure metamorphicrocks. Under water-saturated conditions, chlorite-bearing assemblagesin Mg- and Al-rich eclogites are stable at lower temperaturesthan in Fe-rich eclogites. The relative temperature stabilityof the three amphiboles is hornblende > actinolite > glaucophane(amphibole names used sensu lato). Talc-bearing assemblagesare stable only at low temperature and high pressure in Mg-and Al-rich eclogites. For most eclogite compositions, talccoexists with lawsonite, but not zoisite, in the stability fieldof coesite. Water content contouring of pressure–temperaturepseudosections, along with appropriate geotherms, provides newconstraints concerning dehydration of such rocks in subductingslabs. Chlorite and lawsonite are two important H2O-carriersin subducting slabs. Depending on bulk composition and pressure–temperaturepath, amphibole may or may not be a major H2O-carrier to depth.In most cases, dehydration to make ultrahigh-pressure eclogitestakes place gradually, with H2O content controlled by divariantor higher variance assemblages. Therefore, fluid fluxes in subductionzones are likely to be continuous, with the rate of dehydrationchanging with changing pressure and temperature. Further, eclogitesof different bulk compositions dehydrate differently. Dehydrationof Fe-rich eclogite is nearly complete at relatively shallowdepth, whereas Mg- and Al-rich eclogites dehydrate continuouslydown to greater depth. KEY WORDS: dehydration; eclogites; phase relations; THERMOCALC; UHP metamorphism; whiteschists  相似文献   
3.
鲁东官山榴辉岩呈透镜状包于变质含霓石碱性花岗岩中,榴辉岩的片麻理与主岩片麻理总体呈交切关系,局部可见变质含霓石碱性花岗岩呈细小岩枝状脉贯入榴辉岩中。变质含霓石碱性花岗岩锆石U-Pb法下交点年龄为231±25 Ma,上交点年龄为818±66 Ma。发现了闪长玢岩脉斜切式侵入榴辉岩及变质含霓石碱性花岗岩的接触关系,且闪长玢岩脉中有榴辉岩捕虏体,这种现象指示:闪长玢岩侵位时榴辉岩已折返至地壳较浅部位。研究表明,榴辉岩与变质含霓石碱性花岗岩共同经历了新元古代的超高压变质作用,但变质作用发生时含霓石碱性花岗岩可能处于熔融状态,榴辉岩是其中的固相包体。  相似文献   
4.
Diffusion modelling of growth-zoned garnet is used in combination with standard geothermometric and geobarometric techniques to estimate cooling and denudation rates from the mafic eclogites of the Red Cliff area, Great Caucasus, Russia. Euhedral garnet porphyroblasts exhibit different degrees of prograde growth zoning depending on the size of the grain (100 μm to several mm in diameter). Zoning patterns are mainly expressed in terms of Fe–Mg exchange, with 100*Mg/(Mg+Fe) increasing from 18–20 to 33–37 from core to rim. Geothermobarometry yields conditions of 680±40 °C and a minimum of 1.6±0.2 GPa and of 660±40 °C and 0.8±0.2 GPa for the high-pressure and retrograde stages of equilibration, respectively. A temperature of 600±40 °C has been recorded for the late-stage metamorphic overprint in the mica schists surrounding the eclogites. Relaxation of garnet zoning profiles was modelled for three different hypothetical PT t trajectories, all with an initial temperature of 680 °C and a pressure change of 0.8 GPa. The first two trajectories involve decompression associated with regular cooling down to 660 °C (near isothermal) and 600 °C. The third path is a two-step trajectory comprising near-isobaric cooling down to 600 °C followed by isothermal decompression to 0.8 GPa. These P–T trajectories cover as wide a range of pressure and temperature changes endured by the rocks as possible, thus representing extreme cases for calculating cooling and exhumation rates. Calculations indicate that the zoning pattern of the smallest garnet (i.e. garnet for which the zoning is most easily eliminated during post-growth processes) along the different paths can be preserved for the following average exhumation and cooling rates: path 1, 143 mm a?1 and 102 °C Ma?1; path 2, 60 mm a?1 and 171 °C Ma?1; path 3, 11–30 mm a?1 and 200–400 °C Ma?1. These results are discussed in light of theoretical P–T–t paths extracted from thermal models of regions of thickened crust, and from analogue models of accretionary wedge and continental lithosphere subduction.  相似文献   
5.
鄂北—豫南地区榴辉岩相岩石变质作用演化特征   总被引:4,自引:2,他引:4  
王晓燕 《岩石学报》1997,13(3):369-379
鄂北-豫南地区榴辉岩相变质岩石类型多样,其野外产状和岩石化学特征反映了原地变质成因。根据区域地质及榴辉岩相变质岩石的野外产状,结合榴辉岩中石榴石绿辉石的Fe2+-Mg互换温度计所计算出的峰期变质温度,将本区榴辉岩分为两类,一类为中温榴辉岩,产于晚太古界—早元古界大别群,为B类榴辉岩,由绿帘角闪岩相岩石进变质形成。榴辉岩相变质作用分为两阶段,首先为柯石英榴辉岩相阶段,其峰期变质条件为T=600℃~700℃,P=2.7~3.0GPa,然后近等温降压,出现蓝闪石等含水矿物,为蓝闪石榴辉岩相阶段,此时水活度在榴辉岩相变质过程中起着重要作用;另一类为低温榴辉岩,产于中元古界七角山组,为C类榴辉岩,由蓝片岩相岩石进变质形成,其峰期变质条件为T=490℃~560℃,P<1.5GPa。中温榴辉岩与低温榴辉岩具有不同的变质作用特征。最后讨论了本区高压变质带的成因演化。  相似文献   
6.
以UP-Pb单颗粒锆石同位素稀释法、角闪石~(40)Ar—~(39)Ar坪年龄和Sm-Nd全岩及矿物等时线相结合的研究方法,系统地研究了大别造山带西部熊店榴辉岩的峰变质年龄,可能的原岩年龄和退变质年龄,建立了这一榴辉岩的构造-变质时间序列,提出了大别地区存在加里东期榴辉岩的确凿证据。  相似文献   
7.
滇西勐库地区退变质榴辉岩锆石U-Pb年龄及其地质意义   总被引:4,自引:1,他引:3  
滇西双江县勐库地区退变质榴辉岩呈构造透镜体产于湾河蛇绿混杂岩带内,该发现弥补了东特提斯造山带高压-超高压变质岩在云南境内的空缺。在岩石学观察的基础上,借助激光剥蚀等离子体质谱(LA-ICP-MS)技术,对退变质榴辉岩中的锆石开展了精确的U-Pb年龄测定。所测试的3件样品分别采自3个不同的露头:样品PM011-9-1采自勐库控角剖面,样品PM038-15-4采自勐库地界剖面,样品GH1612-1-1采自勐库根恨大寨。测年结果显示,样品PM011-9-1的23个测点中存在2组较集中的~(206)Pb/~(238)U年龄,分别为801.0±9.8Ma和227.0±12Ma;样品PM038-15-4的26个测点中存在2组较集中的~(206)Pb/~(238)U年龄,分别为447.5±3.6Ma和291.7±6.3Ma;样品GH1612-1-1的30个测点中存在一组较集中的~(206)Pb/~(238)U年龄,为229.0±1.3Ma。结合区域资料及锆石阴极发光图像分析,801.0±9.8Ma应属退变质榴辉岩的原岩年龄,可能代表了Rodinia超大陆裂解早期出现的初始洋壳;而447.5±3.6Ma、291.7±6.3Ma和229.0±1.3~227.0±12Ma这3组年龄可能代表了退变质榴辉岩经历的3期变质作用年龄:分别为峰期硬柱石榴辉岩相的变质作用;中期角闪石榴辉岩相-高压麻粒岩相的退变质作用,为一个降压-增温的"热折返"过程;主期角闪岩相的退变质作用,是一个大幅度的降温-减压过程,奠定了勐库地区退变质榴辉岩的主体面貌。  相似文献   
8.
This paper reports isotopic and geochemical studies of eclogites from the western ultrahigh pressure (UHP) and eastern high-pressure (HP) blocks of the Kokchetav subduction-collision zone. These HP and UHP eclogites exhumed in two stages: (1) The rocks of the western block metamorphosed within the field of diamond stability (e.g., Kumdy-Kol and Barchy); (2) In contrast, the metamorphic evolution of the eastern block reached the pressure peak within the stability field of coesite (e.g., Kulet, Chaglinka, Sulu-Tyube, Daulet, and Borovoe). The eclogites vary widely in the ratios of incompatible elements and in the isotope ratios of Nd (143Nd/144Nd = 0.51137-0.513180) and Sr (87Sr/86Sr = 0.703930.78447). The Sulu-Tyube eclogites display isotope-geochemical features close to N-MORB, while those from the other sites are compositionally similar to E-type MORB or island arc basalts (IAB). The model ages TNd(DM) of eclogites vary between 1.95 and 0.67 Ga. The Sulu-Tyube eclogite yields the youngest age; it has the values of εNd(T) (7.2) and 87Sr/86Sr (0.70393) close to the depleted mantle values. The crustal input to the protolith of the Kokchetav eclogites is evident on the εNd(T)-86Sr/87Sr and εNd(T)-T plots. The eclogites make up a trend from DM to country rocks. Some eclogites from the Kulet, Kumdy-Kol, and Barchy localities display signs of partial melting, such as high Sm/Nd (0.65-0.51) and low (La/Sm)N (0.34-0.58) values. The equilibrium temperatures of these eclogites are higher than 850 °C. The geochemical features of eclogites testify to the possibility of the eclogite protolith formation in the tectonic setting of passive continental rift margin subducted to depths over 120 km.  相似文献   
9.
Eclogites from the Kebuerte Valley, Chinese South Tianshan, consist of garnet, omphacite, phengite, paragonite, glaucophane, hornblendic amphibole, epidote, quartz and accessory rutile, titanite, apatite and carbonate minerals with occasional presence of coesite or quartz pseudomorphs after coesite. The eclogites are grouped into two: type I contains porphyroblastic garnet, epidote, paragonite and glaucophane in a matrix dominated by omphacite where the proportion of omphacite and garnet is >50 vol.%; and type II contains porphyroblastic epidote in a matrix consisting mainly of fine‐grained garnet, omphacite and glaucophane where the proportion of omphacite and garnet is <50 vol.%. Garnet in both types of eclogites mostly exhibits core–rim zoning with increasing grossular (Xgr) and pyrope (Xpy) contents, but a few porphyroblastic garnet grains in type I eclogite shows core–mantle zoning with increasing Xpy and a slight decrease in Xgr, and mantle–rim zoning with increases in both Xgr and Xpy. Garnet rims in type I eclogite have higher Xpy than in type II. Petrographic observations and phase equilibria modelling with pseudosections calculated using thermocalc in the NCKMnFMASHO system for three representative samples suggest that the eclogites have experienced four stages of metamorphism: stage I is the pre‐peak temperature prograde heating to the pressure peak (Pmax) which was recognized by the garnet core–mantle zoning with increasing Xpy and decreasing Xgr. The PT conditions at Pmax constrained from garnet mantle or core compositions with minimum Xgr content are 29–30 kbar at 526–540 °C for type I and 28.2 kbar at 518 °C for type II, suggesting an apparent thermal gradient of ~5.5 °C km?1. Stage II is the post‐Pmax decompression and heating to the temperature peak (Tmax), which was modelled from the garnet zoning with increasing Xgr and Xpy contents. The PT conditions at Tmax, defined using the garnet rim compositions with maximum Xpy content and the Si content in phengite, are 24–27 kbar at 590 °C for type I and 22 kbar at 540 °C for type II. Stage III is the post‐Tmax isothermal decompression characterized by the decomposition of lawsonite, which may have resulted in the release of a large amount of fluid bound in the rocks, leading to the formation of epidote, paragonite and glaucophane porphyroblasts. Stage IV is the late retrograde evolution characterized by the overprint of hornblendic amphibole in eclogite and the occurrence of epidote–amphibole facies mineral assemblages in the margins or in the strongly foliated domains of eclogite blocks due to fluid infiltration. The PT estimates obtained from conventional garnet–clinopyroxene–phengite thermobarometry for the Tianshan eclogites are roughly consistent with the P–T conditions of stage II at Tmax, but with large uncertainties in temperature. On the basis of these metamorphic stages or P–T paths, we reinterpreted that the recently reported zircon U–Pb ages for eclogite may date the Tmax stage or the later decompression stage, and the widely distributed (rutile‐bearing) quartz veins in the eclogite terrane may have originated from the lawsonite decomposition during the decompression stage rather than from the transition from blueschist to eclogite as previously proposed.  相似文献   
10.
A review of currently available information relevant to the Basal Gneiss Complex (BGC) of Western South Norway, combined with the authors'own observations, leads to the following conclusions.
1. Most of the BGC consists of Proterozoic crystalline rocks and probably subordinate Lower Palaeozoic cover.
2. The last major deformation of these rocks was during the Caledonian orogeny and involved large-scale thrusting, recumbent folding and doming. The structural development of the BGC is closely tied in with that of the Caledonian allochthon.
3. The whole eclogite-bearing part of the BGC has suffered a high pressure metamorphism with conditions of between 550°C, 12.5 kbar (Sunnfjord) and about 750°C, 20 kbar (Møre og Romsdal) at the metamorphic climax.
4. This metamorphism was of Caledonian age, probably rather early in the Caledonian tectonic history of the BGC and is considered to have been a rather transient event.
By setting these conclusions in a framework provided by geophysical evidence for the deep structure of the crust in southern Norway we have constructed a geotectonic model to explain the recorded metamorphic history of the BGC. It is suggested that considerable crustal thickening was caused by imbrication of the Baltic plate margin during continental collision with the Greenland plate. This resulted in high pressure metamorphism in the resulting nappe stack. Progradation of the suture caused underthrusting of the Baltic foreland below the eclogite-bearing terrain causing it to emerge at the Earth's surface, aided by tectonic stripping and erosion.
Application of isostacy equations to the model shows that eclogites can be formed by in-situ metamorphism in crustal rocks and reappear at the land surface above a normal thickness of crust in a single orogenic episode of approximately 65-70 Ma duration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号