首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
地质学   4篇
  2013年   1篇
  2009年   1篇
  2008年   1篇
  1989年   1篇
排序方式: 共有4条查询结果,搜索用时 109 毫秒
1
1.
Uranium mineralization in the El Erediya area, Egyptian Eastern Desert, has been affected by both high temperature and low temperature fluids. Mineralization is structurally controlled and is associated with jasperoid veins that are hosted by a granitic pluton. This granite exhibits extensive alteration, including silicification, argillization, sericitization, chloritization, carbonatization, and hematization. The primary uranium mineral is pitchblende, whereas uranpyrochlore, uranophane, kasolite, and an unidentified hydrated uranium niobate mineral are the most abundant secondary uranium minerals. Uranpyrochlore and the unidentified hydrated uranium niobate mineral are interpreted as alteration products of petscheckite. The chemical formula of the uranpyrochlore based upon the Electron Probe Micro Analyzer (EPMA) is . It is characterized by a relatively high Zr content (average ZrO2 = 6.6 wt%). The average composition of the unidentified hydrated uranium niobate mineral is , where U and Nb represent the dominant cations in the U and Nb site, respectively. Uranophane is the dominant U6+ silicate phase in oxidized zones of the jasperoid veins. Kasolite is less abundant than uranophane and contains major U, Pb, and Si but only minor Ca, Fe, P, and Zr. A two-stage metallogenetic model is proposed for the alteration processes and uranium mineralization at El Erediya. The primary uranium minerals were formed during the first stage of the hydrothermal activity that formed jasperoid veins in El Eradiya granite (130–160 Ma). This stage is related to the Late Jurassic–Early Cretaceous phase of the final Pan-African tectono-thermal event in Egypt. After initial formation of El Erediya jasperoid veins, a late stage of hydrothermal alteration includes argillization, dissolution of iron-bearing sulfide minerals, formation of iron-oxy hydroxides, and corrosion of primary uranium minerals, resulting in enrichment of U, Ca, Pb, Zr, and Si. During this stage, petscheckite was altered to uranpyrochlore and oxy-petscheckite. Uranium was likely transported as uranyl carbonate and uranyl fluoride complexes. With change of temperature and pH, these complexes became unstable and combined with silica, calcium, and lead to form uranophane and kasolite. Finally, at a later stage of low-temperature supergene alteration, oxy-petscheckite was altered to an unidentified hydrated uranium niobate mineral by removal of Fe.  相似文献   
2.
The Um Ara area, in the south Eastern Desert of Egypt contains a number of uranium occurrences related to granitic rocks. U-rich thorite, thorite and zircon are the main primary uranium- and thorium-bearing minerals found in mineralized zones of the Um Ara alkali-feldspar granites; uranophane is the most common secondary uranium mineral. U-rich thorite contains blebs of galena, has rims of uranophane and contains inclusions of Zr-rich thorite. Electron probe microanalysis (EPMA) provides an indication of a range of solid solution between thorite and zircon, in which intermediate phases, such as Th-rich zircon and Zr-rich thorite, were formed. These phases have higher sum of all cations per formula (2.05 to 2.06 apfu, for 4 oxygen atoms) than that of ideal thorite and zircon. This is attributed to the presence of substantial amount of interstitial cations such as Ca, U and Al in these phases. Some zircon grains are stoichiometric in composition, other altered grains display lower SiO2 and ZrO2 contents. Enrichment of Th and U in altered zircon preferentially involves coupled substitution (Ca2+ + (Th,U)4+ ↔ 2Zr4+ + 2Si4+), implying that significant U and Th may enter the Zr and Si position in zircon. Negative correlation of Zr vs. Hf and Al may indicate that Hf and Al have been introduced to the zircon during later fluid alteration rather than during the primary magmatic event. A two-stage metallogenetic model is proposed for the alteration processes and origin of U- and Th-bearing minerals in the Um Ara alkali-feldspar granite: 1) the first stage was dominated by hydrothermal alteration and accompanied by albitization, k-feldspathization, desilicification, chloritization, hematitization, silicification, argillization, fluoritization and corrosion of primary U-bearing minerals. Solid-solution between thorite and zircon occurred during this stage. The second stage occurred at the near-surface profile where circulating meteoric water played an important role in mobilizing the early formed primary U-bearing minerals. Uranium was likely transported as a calcium uranyl carbonate complexes. When these complexes lost their stabilities by precipitation of calcite, they decomposed in the presence of silica to form uranophane.  相似文献   
3.
Uranophane-beta of supergene origin formed in the Borborema Pegmatite Mineral.Province, which is situated in the north-easternmost part of Brazil. The sampling site lies in the topmost parts of the Quintos Pegmatite, about ten kilometers north of the town of Equador. The uranyl silicate was investigated for its age and physical chemical regime of formation. Age dating yielded a U/Pb age of 6.77 ± 0.61 Ma. Uranophane has been derived together with autunite from weathering of brannerite in a tropical climate under alternating wet and dry seasons, when the pH was below 8. This canary-yellow well-crystallized uranyl silicate can be used as a physical chemical marker as well as a clock for supergene alteration.  相似文献   
4.
本文描述了双滑江铀矿床的矿物-地球化学特征。该矿床从地表至445m深处均见次生铀矿物。作者进行了铀同位素比值~(234)U/~(238)U、古铀量、岩石化学成分等方面的研究,结果表明,该铀矿床属于淋积型矿床,其铀源来自于燕山期花岗岩,而不是印支期花岗岩。燕山期花岗岩的铀同位素比值~(234)U/~(238)U小于1(0.88—0.98),而印支期花岗岩则大于1(1.038—1.058)。此外,碎裂的燕山期花岗岩还为矿床中的主要有用矿物硅钙铀矿提供了硅和钙。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号