首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  国内免费   2篇
地质学   10篇
  2017年   2篇
  2009年   2篇
  2008年   1篇
  2006年   1篇
  2004年   2篇
  2003年   1篇
  1987年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
Zr-in-rutile thermometry in blueschists from Sifnos, Greece   总被引:1,自引:0,他引:1  
Zr-in-rutile thermometry on samples of blueschist from Sifnos, Greece, yields temperatures that reflect progressive crystallization of rutile from ca. 445 to 505°C with an analytical precision of + 18/−27 and ± 10°C using the electron microprobe and ± 1.5–3.5°C using the ion microprobe. Individual grains are generally homogeneous within analytical uncertainty. Different grains within a single sample record temperature differences as large 55°, although in most samples the range of temperatures is on the order of 25°. In several samples, Zr-in-rutile temperatures from grains within garnet are lower than temperatures from matrix grains, reflecting growth of rutile with increasing temperature of metamorphism. Although the specific rutile-producing reactions have not been identified, it is inferred that rutile grows from either continuous reaction involving the breakdown of lower grade phases (possibly ilmenite), or from pseudomorph reactions involving the breakdown of relic igneous precursors at blueschist-facies conditions. No systematic variation in rutile temperatures was observed across the blueschist belt of northern Sifnos, consistent with the belt having behaved as a coherent block during subduction.  相似文献   
2.
Oxygen isotope studies were carried out across units of a Neoproterozoic nappe system, south of São Francisco Craton. A temperature decrease toward the base of the system is found, consistent with a previously recognized inverted metamorphic pattern. The tectonic contact of the basal unit and the reworked southern São Francisco craton show a steep temperature gradient, suggesting that low temperature thrusting acted as the dominant tectonic process. The contrasts between the δ18O values of the Três Pontas-Varginha and Carmo da Cachoeira nappes and the differences among the samples and minerals are consistent with the preservation of sedimentary isotopic composition during metamorphism. The small differences in the δ18O values between the undeformed and the deformed calc-silicate samples (1.6‰) suggest that the δ18O value of mylonitization fluids was close to that which equilibrated with the metamorphic assemblage. The distinct δ18O values of metapelitic and calc-silicate samples and the great temperature difference from one type to the other indicate that no large-scale fluid interaction processes occurred during metamorphism. Oxygen isotopic estimations of both Três Pontas-Varginha undeformed rocks and Carmo da Cachoeira unaltered equivalents indicate δ18O values of up to 18‰. Comparison between these values and those from the ‘basement’ orthogneisses (8.3–8.5‰) indicates the latter are not sources for the metapelites.  相似文献   
3.
作为近年来新兴的实验技术,二元同位素(D47)测温技术已被应用于碳酸盐岩成岩环境的研究中。简要介绍了二元同位素测温技术的原理及应用方法,并以塔里木盆地中下寒武统白云岩为例,优选11块样品,测试其D47值和白云石的碳氧同位素,并计算出样品的成岩温度和古流体的δ~(18)O值。综合分析认为:样品中,颗粒白云岩形成于低温准同生—浅埋藏环境,成岩流体为海水;细晶白云岩为深埋藏成岩环境中原岩受到了高温重结晶作用的改造,成岩流体为地下热卤水;孔缝中的白云石胶结物是深埋藏成岩环境富镁热卤水沉淀作用的产物。研究证明二元同位素测温技术可以较好地恢复白云岩的成岩温度,减少储层成因的多解性,它为今后储层成因研究提供了一种新的手段和依据。  相似文献   
4.
The Malbunka copper deposit, located about 220 km west of Alice Springs, in the Northern Territory of Australia, may be a rare example of primary formation of copper carbonate mineralization. This deposit consists of unusual azurite disks up to 25 cm diameter, and lesser amounts of secondary azurite crystals and malachite. Carbon isotope values of the copper carbonate minerals are consistent with formation from groundwater-dissolved inorganic carbon. Oxygen isotope thermometry formation temperature estimates are 5–16 °C above ambient temperatures, suggesting the copper carbonates formed at a depth between 0.3 and 1.6 km in the Amadeus Basin. Azurite fluid inclusion waters are rich in boron, chlorine, and other elements suggestive of dilute oil basin formation fluids. In addition, presence of euhedral tourmaline with strong chemical zonation suggest that this was a low temperature diagenetic setting. The strong correlation of structures associated with hydraulic fracturing and rich copper carbonate mineralization suggest a strongly compartmentalized overpressure environment. It is proposed that copper carbonates of the Malbunka deposit formed when deep, copper-rich formation fluids were released upward by overpressure-induced failure of basin sediments, permitting mixing with carbonate-rich fluids above. This work bears directly upon exploration for a new type of primary copper deposit, through understanding of the conditions of genesis.  相似文献   
5.
Ti-in-zircon thermometry: applications and limitations   总被引:16,自引:5,他引:11  
The titanium concentrations of 484 zircons with U-Pb ages of ∼1 Ma to 4.4 Ga were measured by ion microprobe. Samples come from 45 different igneous rocks (365 zircons), as well as zircon megacrysts (84) from kimberlite, Early Archean detrital zircons (32), and zircon reference materials (3). Samples were chosen to represent a large range of igneous rock compositions. Most of the zircons contain less than 20 ppm Ti. Apparent temperatures for zircon crystallization were calculated using the Ti-in-zircon thermometer (Watson et al. 2006, Contrib Mineral Petrol 151:413–433) without making corrections for reduced oxide activities (e.g., TiO2 or SiO2), or variable pressure. Average apparent Ti-in-zircon temperatures range from 500° to 850°C, and are lower than either zircon saturation temperatures (for granitic rocks) or predicted crystallization temperatures of evolved melts (∼15% melt residue for mafic rocks). Temperatures average: 653 ± 124°C (2 standard deviations, 60 zircons) for felsic to intermediate igneous rocks, 758 ± 111°C (261 zircons) for mafic rocks, and 758 ± 98°C (84 zircons) for mantle megacrysts from kimberlite. Individually, the effects of reduced or , variable pressure, deviations from Henry’s Law, and subsolidus Ti exchange are insufficient to explain the seemingly low temperatures for zircon crystallization in igneous rocks. MELTs calculations show that mafic magmas can evolve to hydrous melts with significantly lower crystallization temperature for the last 10–15% melt residue than that of the main rock. While some magmatic zircons surely form in such late hydrous melts, low apparent temperatures are found in zircons that are included within phenocrysts or glass showing that those zircons are not from evolved residue melts. Intracrystalline variability in Ti concentration, in excess of analytical precision, is observed for nearly all zircons that were analyzed more than once. However, there is no systematic change in Ti content from core to rim, or correlation with zoning, age, U content, Th/U ratio, or concordance in U-Pb age. Thus, it is likely that other variables, in addition to temperature and , are important in controlling the Ti content of zircon. The Ti contents of igneous zircons from different rock types worldwide overlap significantly. However, on a more restricted regional scale, apparent Ti-in-zircon temperatures correlate with whole-rock SiO2 and HfO2 for plutonic rocks of the Sierra Nevada batholith, averaging 750°C at 50 wt.% SiO2 and 600°C at 75 wt.%. Among felsic plutons in the Sierra, peraluminous granites average 610 ± 88°C, while metaluminous rocks average 694 ± 94°C. Detrital zircons from the Jack Hills, Western Australia with ages from 4.4 to 4.0 Ga have apparent temperatures of 717 ± 108°C, which are intermediate between values for felsic rocks and those for mafic rocks. Although some mafic zircons have higher Ti content, values for Early Archean detrital zircons from a proposed granitic provenance are similar to zircons from many mafic rocks, including anorthosites from the Adirondack Mts (709 ± 76°C). Furthermore, the Jack Hills zircon apparent Ti-temperatures are significantly higher than measured values for peraluminous granites (610 ± 88°C). Thus the Ti concentration in detrital zircons and apparent Ti-in-zircon temperatures are not sufficient to independently identify parent melt composition. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
6.
Forty-nine aragonitic and calcitic shells from 14 species of marine tropical molluscs (Bivalvia, Gastropoda, Polyplacophora) and ambient waters from Martinique have been analyzed for their carbon and oxygen isotope compositions. Mineralogy of shells was systematically determined by Raman spectroscopy that reveals composite shell structures and early processes of diagenetic alteration. In mangrove, brackish waters result from the mixing between 89±1% of seawater and 11±1% of freshwater, a hydrological budget quantified by both oxygen isotope and salinity mass balance calculations. Mollusc shells from the mangrove environment (S=31‰; δ18O=0.5‰) are characterized by mean δ13C values (−1.2‰) lower than those (+2.6‰) living in the open sea (S=35‰; δ18O=1‰). These low carbon isotope compositions result from the oxidation of organic matter into bicarbonate ions used in the building of mollusc shells. The oxygen isotope compositions of the studied mollusc species are mainly controlled by the temperature and composition of seawater whereas the role of the so-called “vital effects” is negligible. Contrasting with carbon isotopes, variability in the δ18O values among and within species of mollusc shells is very low (1σ=0.15) for a given littoral environment. Using ambient temperatures of seawater (28-30 °C), oxygen isotope fractionations between all studied living species and environmental waters match those extrapolated from the fractionation equation established for molluscs by Grossman and Ku [Chem. Geol., Isot. Geosci. Sect. 59 (1986) 59] in the range 3-20 °C. By analyzing calcite and aragonite layers from the same shell or by comparing shells from different species living in the same environment, there is no evidence that oxygen isotope fractionation between aragonite and water differs from that between calcite and water. On the basis of these results, we conclude that the oxygen isotope compositions of shells from most fossil mollusc species are suitable to estimate past seawater temperatures at any paleolatitude.  相似文献   
7.
We report mineralogical and chemical compositions of spinel peridotite xenoliths from two Tertiary alkali basalt localities on the Archean North China craton (Hannuoba, located in the central orogenic block, and Qixia, in the eastern block). The two peridotite suites have major element compositions that are indistinguishable from each other and reflect variable degrees (0–25%) of melt extraction from a primitive mantle source. Their compositions are markedly different from typical cratonic lithosphere, consistent with previous suggestions for removal of the Archean mantle lithosphere beneath this craton. Our previously published Os isotopic results for these samples [Earth Planet. Sci. Lett. 198 (2002) 307] show that lithosphere replacement occurred in the Paleoproterozoic beneath Hannuoba, but in the Phanerozoic beneath Qixia. Thus, we see no evidence for a compositional distinction between Proterozoic and Phanerozoic continental lithospheric mantle. The Hannuoba xenoliths equilibrated over a more extensive temperature (hence depth) interval than the Qixia xenoliths. Neither suite shows a correlation between equilibration temperature and major element composition, indicating that the lithosphere is not chemically stratified in either area. Trace element and Sr and Nd isotopic compositions of the Hannuoba xenoliths reflect recent metasomatic overprinting that is not related to the Tertiary magmatism in this area.  相似文献   
8.
A deep epithermal vein system hosted in Late Proterozoic to Cambrian granodiorite has been identified in the Sierra Norte de Córdoba, the easternmost range of the Sierras Pampeanas Orientales of Argentina. The vein swarm extends over an area of 3 km2 parallel to a mylonitic belt and formed in fractured granodiorite. Thicknesses of veins are less than 0.5 m and their visible strike length is less than 100 m. Veins are either barren or weakly mineralized in base-metal sulfides. Most veins have mineral associations dominated by calcite and quartz with lesser amounts of chlorite, sericite, pyrite, and minor illite. In other less exposed albite-rich, adularia-bearing veins, chalcopyrite, bornite, galena, sphalerite, chalcocite and covellite may occur. The widespread occurrence of bladed calcite without any petrographic or microthermometric evidence of boiling implies that this particular habit of calcite may also develop under sub-near boiling fluid conditions. Thermometric calculations based on fluid inclusion data, chlorite composition and oxygen isotopes in the quartz–calcite pair, constrain the formation of the system between 300 and 350 °C, at pressures between 42 and 64 MPa (1.5–2.3 km). Stable isotope data suggest that W/R interaction might have been the most probable mechanism of alteration, involving the participation of meteoric fluids; nevertheless, the metallic signature of some weakly mineralized veins as well as intermediate fluid inclusion salinities favor a magmatic input and a mixed origin for the fluids. Textures and mineral associations, as well as the absence of evidence of boiling in fluid inclusions, all suggest that the silica–carbonate vein system formed deeper than typically shallow Au and Ag-bearing boiling solutions. A 485 (±25) Ma lamprophyre dike crosscuts some of these veins locally producing metasomatic reactions and skarn formation, which constrains the age of the hydrothermal system to the Cambrian-Early Ordovician time span.  相似文献   
9.
岩浆包裹体研究已经成为现代火山岩岩石学的一项分支学科。研究方面涉及:重溯火山岩浆结晶演化的热历史,提供有关火山岩浆沿下降液相线的成分数据;查明火山岩浆结晶演化过程中化学成分(包括挥发组分)的变迁规律;查明各种岩浆事件的性质(分离结晶、不混溶、混合、混染),及其发生发展的物理化学条件;帮助探索解决某些疑难问题,如下地壳—上地幔的性质及玄武岩浆起源、细碧岩—角斑岩系的成因、测定蚀变火山岩建造的年龄等。此外,岩浆包裹体的实验岩石学研究,以及利用岩浆包裹体阐明火山建造的含矿性,研究火山沉积作用、地热作用等,对于火  相似文献   
10.
对中国大陆科学钻探(CCSD)主孔200~1005m范围内8件榴辉岩样品的金红石进行了LA-ICPMS原位微区微量元素分析,结合前人已发表的全岩和金红石分析数据,研究结果发现:在不同类型榴辉岩中,金红石的微量元素与其全岩成分具有不同的相关关系。金红石中的Nb和Ta元素含量不同程度地受控于全岩Nb和Ta含量。在高钛和低镁钛榴辉岩中,金红石的Cr与全岩Cr/TiO2正相关;在富镁榴辉岩中,金红石的Cr含量受全岩MgO含量的控制;在高钛和富镁榴辉岩中,全岩成分明显影响着金红石的Zr含量,金红石Zr温度计可能不适用。低镁钛榴辉岩的金红石的平衡温度普遍低于榴辉岩峰期变质温度,可能是变质流体参与下的扩散作用和退变质作用所致;多数情况下,单个样品中大部分金红石颗粒的Zr含量是均匀的,金红石Zr温度计所给出的温度可能代表着退变质再平衡的温度;CCSD榴辉岩的全岩Nb/Ta比值普遍低于其中金红石的Nb/Ta比值,不支持金红石榴辉岩可能是地球上超球粒陨石Nb/Ta比值储库的观点。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号