首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   648篇
  免费   103篇
  国内免费   301篇
地球物理   77篇
地质学   937篇
海洋学   20篇
综合类   13篇
自然地理   5篇
  2024年   1篇
  2023年   6篇
  2022年   9篇
  2021年   16篇
  2020年   15篇
  2019年   17篇
  2018年   20篇
  2017年   17篇
  2016年   17篇
  2015年   17篇
  2014年   23篇
  2013年   37篇
  2012年   26篇
  2011年   34篇
  2010年   31篇
  2009年   54篇
  2008年   34篇
  2007年   86篇
  2006年   83篇
  2005年   68篇
  2004年   61篇
  2003年   71篇
  2002年   40篇
  2001年   42篇
  2000年   43篇
  1999年   39篇
  1998年   31篇
  1997年   31篇
  1996年   15篇
  1995年   22篇
  1994年   13篇
  1993年   8篇
  1992年   9篇
  1991年   8篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
  1983年   2篇
排序方式: 共有1052条查询结果,搜索用时 781 毫秒
1.
Abstract Eclogites are distributed for more than 500 km along a major tectonic boundary between the Sino-Korean and Yangtze cratons in central and eastern China. These eclogites usually have high-P assemblages including omphacite + kyanite and/or coesite (or its pseudomorph), and form a high-P eclogite terrane. They occur as isolated lenses or blocks 10 cm to 300 m long in gneisses (Type I), serpentinized garnet peridotites (Type II) and marbles (Type III). Type I eclogites were formed by prograde metamorphism, and their primary metamorphic mineral assemblage consists mainly of garnet [pyrope (Prp) = 15–40 mol%], omphacite [jadeite (Jd) = 34–64 mol%], pargasitic amphibole, kyanite, phengitic muscovite, zoisite, an SiO2 phase, apatite, rutile and zircon. Type II eclogites characteristically contain no SiO2 phase, and are divided into prograde eclogites and mantle-derived eclogites. The prograde eclogites of Type II are petrographically similar to Type I eclogites. The mantle-derived eclogites have high MgO/(FeO + Fe2O3) and Cr2O3 compositions in bulk rock and minerals, and consist mainly of pyrope-rich garnet (Prp = 48–60 mol%), sodic augite (Jd = 10–27 mol%) and rutile. Type III eclogites have an unusual mineral assemblage of grossular-rich (Grs = 57 mol%) garnet + omphacite (Jd = 30–34 mol%) + pargasite + rutile. Pargasitic and taramitic amphiboles, calcic plagioclase (An68), epidote, zoisite, K-feldspar and paragonite occur as inclusions in garnet and omphacite in the prograde eclogites. This suggests that the prograde eclogites were formed by recrystallization of epidote amphibolite and/or amphibolite facies rocks with near-isothermal compression reflecting crustal thickening during continent–continent collision of late Proterozoic age. Equilibrium conditions of the prograde eclogites range from P > 26 kbar and T= 500–750°C in the western part to P > 28 kbar and T= 810–880°C in the eastern part of the high-P eclogite terrane. The prograde eclogites in the eastern part are considered to have been derived from a deeper position than those in the western part. Subsequent reactions, manifested by (1) narrow rims of sodic plagioclase or paragonite on kyanite and (2) symplectites between omphacite and quartz are interpreted as an effect of near-isothermal decompression during the retrograde stage. The conditions at which symplectites re-equilibrated tend to increase from west (P < 10 kbar and T < 580°C) to east (P > 9 kbar and T > 680°C). Equilibrium temperatures of Type II mantle-derived eclogites and Type III eclogite are 730–750°C and 680°C, respectively.  相似文献   
2.
In the Shackleton Range of East Antarctica, garnet-bearing ultramafic rocks occur as lenses in supracrustal high-grade gneisses. In the presence of olivine, garnet is an unmistakable indicator of eclogite facies metamorphic conditions. The eclogite facies assemblages are only present in ultramafic rocks, particularly in pyroxenites, whereas other lithologies – including metabasites – lack such assemblages. We conclude that under high-temperature conditions, pyroxenites preserve high-pressure assemblages better than isofacial metabasites, provided the pressure is high enough to stabilize garnet–olivine assemblages (i.e. ≥18–20 kbar). The Shackleton Range ultramafic rocks experienced a clockwise P–T path and peak conditions of 800–850 °C and 23–25 kbar. These conditions correspond to ∼70 km depth of burial and a metamorphic gradient of 11–12 °C km−1 that is typical of a convergent plate-margin setting. The age of metamorphism is defined by two garnet–whole-rock Sm–Nd isochrons that give ages of 525 ± 5 and 520 ± 14 Ma corresponding to the time of the Pan-African orogeny. These results are evidence of a Pan-African suture zone within the northern Shackleton Range. This suture marks the site of a palaeo-subduction zone that likely continues to the Herbert Mountains, where ophiolitic rocks of Neoproterozoic age testify to an ocean basin that was closed during Pan-African collision. The garnet-bearing ultramafic rocks in the Shackleton Range are the first known example of eclogite facies metamorphism in Antarctica that is related to the collision of East and West Gondwana and the first example of Pan-African eclogite facies ultramafic rocks worldwide. Eclogites in the Lanterman Range of the Transantarctic Mountains formed during subduction of the palaeo-Pacific beneath the East Antarctic craton.  相似文献   
3.
The low-temperature heat capacity (C p) of Si-wadeite (K2Si4O9) synthesized with a piston cylinder device was measured over the range of 5–303 K using the heat capacity option of a physical properties measurement system. The entropy of Si-wadeite at standard temperature and pressure calculated from the measured heat capacity data is 253.8 ± 0.6 J mol−1 K−1, which is considerably larger than some of the previous estimated values. The calculated phase transition boundaries in the system K2O–Al2O3–SiO2 are generally consistent with previous experimental results. Together with our calculated phase boundaries, seven multi-anvil experiments at 1,400 K and 6.0–7.7 GPa suggest that no equilibrium stability field of kalsilite + coesite intervenes between the stability field of sanidine and that of coesite + kyanite + Si-wadeite, in contrast to previous predictions. First-order approximations were undertaken to calculate the phase diagram in the system K2Si4O9 at lower pressure and temperature. Large discrepancies were shown between the calculated diagram compared with previously published versions, suggesting that further experimental or/and calorimetric work is needed to better constrain the low-pressure phase relations of the K2Si4O9 polymorphs. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
4.
Experimental phase equilibrium and trace element partitioningdata are reported for H2O-saturated mid-ocean ridge basalt at2·5 GPa, 750–900°C and oxygen fugacities atthe nickel–nickel oxide buffer. Garnet, omphacite andrutile are present at all temperatures. Amphibole and epidotedisappear as residual phases above 800°C; allanite appearsabove 750°C. The Na–Al-rich silicate glass presentin all run products is likely to have quenched from a supercriticalliquid. Trace element analyses of glasses demonstrate the importantcontrol exerted by residual minerals on liquid chemistry. Inaddition to garnet, which controls heavy rare earth elements(HREE) and Sc, and rutile, which controls Ti, Nb and Ta, allanitebuffers the light REE (LREE; La–Sm) contents of liquidsto relatively low levels and preferentially holds back Th relativeto U. In agreement with previous experimental and metamorphicstudies we propose that residual allanite plays a key role inselectively retaining trace elements in the slab during subduction.Experimental data and analyses of allanite-bearing volcanicrocks are used to derive a model for allanite solubility inliquids as a function of pressure, temperature, anhydrous liquidcomposition and LREE content. The large temperature dependenceof allanite solubility is very similar to that previously determinedfor monazite. Our model, fitted to 48 datapoints, retrievesLREE solubility (in ppm) to within a factor of 1· 40over a pressure range of 0–4 GPa, temperature range of700–1200°C and for liquids with anhydrous SiO2 contentsof 50–84 wt %. This uncertainty in LREE content is equivalentto a temperature uncertainty of only ± 27°C at 1000K, indicating the potential of allanite as a geothermometer.Silicic liquids from either basaltic or sedimentary protolithswill be saturated in allanite except for Ca-poor protolithsor at very high temperatures. For conventional subduction geothermsthe low solubility of LREE (+ Th) in liquids raises questionsabout the mechanism of LREE + Th transport from slab to wedge.It is suggested either that, locally, temperatures experiencedby the slab are high enough to eliminate allanite in the residueor that substantial volumes of H2O-rich fluids must pass throughthe mantle wedge prior to melting. The solubility of accessoryphases in fluids derived from subducted rocks can provide importantconstraints on subduction zone thermal structure. KEY WORDS: subduction; experimental petrology; allanite; solubility; supercritical liquid; eclogite  相似文献   
5.
To investigate eclogite melting under mantle conditions, wehave performed a series of piston-cylinder experiments usinga homogeneous synthetic starting material (GA2) that is representativeof altered mid-ocean ridge basalt. Experiments were conductedat pressures of 3·0, 4·0 and 5·0 GPa andover a temperature range of 1200–1600°C. The subsolidusmineralogy of GA2 consists of garnet and clinopyroxene withminor quartz–coesite, rutile and feldspar. Solidus temperaturesare located at 1230°C at 3·0 GPa and 1300°C at5·0 GPa, giving a steep solidus slope of 30–40°C/GPa.Melting intervals are in excess of 200°C and increase withpressure up to 5·0 GPa. At 3·0 GPa feldspar, rutileand quartz are residual phases up to 40°C above the solidus,whereas at higher pressures feldspar and rutile are rapidlymelted out above the solidus. Garnet and clinopyroxene are theonly residual phases once melt fractions exceed 20% and garnetis the sole liquidus phase over the investigated pressure range.With increasing melt fraction garnet and clinopyroxene becomeprogressively more Mg-rich, whereas coexisting melts vary fromK-rich dacites at low degrees of melting to basaltic andesitesat high melt fractions. Increasing pressure tends to increasethe jadeite and Ca-eskolaite components in clinopyroxene andenhance the modal proportion of garnet at low melt fractions,which effects a marked reduction in the Al2O3 and Na2O contentof the melt with pressure. In contrast, the TiO2 and K2O contentsof the low-degree melts increase with increasing pressure; thusNa2O and K2O behave in a contrasted manner as a function ofpressure. Altered oceanic basalt is an important component ofcrust returned to the mantle via plate subduction, so GA2 maybe representative of one of many different mafic lithologiespresent in the upper mantle. During upwelling of heterogeneousmantle domains, these mafic rock-types may undergo extensivemelting at great depths, because of their low solidus temperaturescompared with mantle peridotite. Melt batches may be highlyvariable in composition depending on the composition and degreeof melting of the source, the depth of melting, and the degreeof magma mixing. Some of the eclogite-derived melts may alsoreact with and refertilize surrounding peridotite, which itselfmay partially melt with further upwelling. Such complex magma-genesisconditions may partly explain the wide spectrum of primitivemagma compositions found within oceanic basalt suites. KEY WORDS: eclogite; experimental petrology; mafic magmatism; mantle melting; oceanic basalts  相似文献   
6.
Most marginal seas in the North Pacific are fed by nutrients supported mainly by upwelling and many are undersaturated with respect to atmospheric CO2 in the surface water mainly as a result of the biological pump and winter cooling. These seas absorb CO2 at an average rate of 1.1 ± 0.3 mol C m−2yr−1 but release N2/N2O at an average rate of 0.07 ± 0.03 mol N m−2yr−1. Most of primary production, however, is regenerated on the shelves, and only less than 15% is transported to the open oceans as dissolved and particulate organic carbon (POC) with a small amount of POC deposited in the sediments. It is estimated that seawater in the marginal seas in the North Pacific alone may have taken up 1.6 ± 0.3 Gt (1015 g) of excess carbon, including 0.21 ± 0.05 Gt for the Bering Sea, 0.18 ± 0.08 Gt for the Okhotsk Sea; 0.31 ± 0.05 Gt for the Japan/East Sea; 0.07 ± 0.02 Gt for the East China and Yellow Seas; 0.80 ± 0.15 Gt for the South China Sea; and 0.015 ± 0.005 Gt for the Gulf of California. More importantly, high latitude marginal seas such as the Bering and Okhotsk Seas may act as conveyer belts in exporting 0.1 ± 0.08 Gt C anthropogenic, excess CO2 into the North Pacific Intermediate Water per year. The upward migration of calcite and aragonite saturation horizons due to the penetration of excess CO2 may also make the shelf deposits on the Bering and Okhotsk Seas more susceptible to dissolution, which would then neutralize excess CO2 in the near future. Further, because most nutrients come from upwelling, increased water consumption on land and damming of major rivers may reduce freshwater output and the buoyancy effect on the shelves. As a result, upwelling, nutrient input and biological productivity may all be reduced in the future. As a final note, the Japan/East Sea has started to show responses to global warming. Warmer surface layer has reduced upwelling of nutrient-rich subsurface water, resulting in a decline of spring phytoplankton biomass. Less bottom water formation because of less winter cooling may lead to the disappearance of the bottom water as early as 2040. Or else, an anoxic condition may form as early as 2200 AD. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
7.
鲁苏榴辉岩套以广泛分布各类榴辉岩、密切伴生石榴石橄榄岩、石榴石麻粒岩等高压岩石组合 ,普遍发育韧性变形带 ,大量出露燕山晚期碱性花岗岩及深源脉岩为特征。它已经历三迭纪早期华南陆块与华北陆块的碰撞事件、大陆逆掩推覆构造事件及后期白垩纪早期开始的大陆伸展构造事件 ,是我国华南陆块与华北陆块之间的重要过渡单元。  相似文献   
8.
超高压变质矿物的某些显微构造缺陷可能指示了岩石短暂和快速抬升过程。文中报道了中国大别山双河地区超高压硬玉石英岩矿物显微构造缺陷的透射电镜(TEM)和Fourier变换红外光谱(FTIR)的研究结果。用TEM研究方法,在硬玉石英岩中硬玉包裹体内发现了亚微米级天然蒙钠长石(MA,C2/m)、高钠长石(HA,C)和低钠长石(LA,C)三种多形变体。表明岩石在折返过程经历过高温变质作用(>930℃),以及退变质过程的快速冷却;在石英包裹体内发现了纳米级柯石英和石盐子矿物,提供了柯石英转变为石英以及峰期变质条件下高盐流体存在的证据。"名义上无水矿物"(NAMs)的结构水(OH/H2O)是以缺陷形式赋存于矿物结构中。FTIR分析结果显示硬玉、石榴石、金红石和石英中结构水的平均含量分别为1000×10-6、(900~1600)×10-6、>2000×10-6和<4×10-6,硬玉石英岩全岩含水量为(490~600)×10-6,表明在高压-超高压变质作用过程中,地壳或原岩中的水可以通过这些NAMs携带到地球深部。该类显微构造缺陷可能是大陆碰撞造山带在高应变速率下的局部弱化和深部断层作用的结果。  相似文献   
9.
In the ultra-high pressure Metamorphic Kimi Complex widespread tonalitic–trondhjemitic dykes, with an intrusion age ca. 65–63 Ma, cross-cut boudins and layers of amphibolitized eclogites. Geochemical investigation proclaims the tied genetic relationship of the amphibolitized eclogites and the associated tonalitic–trondhjemitic dykes. The major and trace element contents and rare earth element patterns of the amphibolitized eclogites indicate formation of their protoliths by fractional crystallization of tholeiitic magmas in a back-arc environment. The tonalites and trondhjemites are characterized by moderate to high Sr contents (>130 ppm), and low Y (<8.2 ppm) and heavy rare earth element contents (Yb content of 0.19–0.88 ppm). The chemical composition of the tonalitic and trondhjemitic dykes are best explained by partial melting of a tholeiitic source like the amphibolitized eclogites with residual garnet and amphibole, at the base of a thickened crust during Early Tertiary subduction/accretion at the southern margins of the European continent.  相似文献   
10.
俯冲带榴辉岩的变形作用及其对俯冲-折返过程的意义   总被引:1,自引:0,他引:1  
曹毅  宋述光 《地质通报》2008,27(10):1646-1653
榴辉岩是大洋和大陆俯冲带的重要岩石类型,在研究俯冲带的形成过程、热结构、壳幔相互作用等方面有重要意义。通过对天然和实验样品中石榴子石、绿辉石等矿物的变形特征、变形机制、变形的影响因素等的综合分析,系统总结了高压变质带中榴辉岩矿物显微和超微变形研究的进展,探讨了榴辉岩的变形特征在恢复俯冲与折返过程研究中的意义及一些尚待解决的一些问题。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号