首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   193篇
  免费   20篇
  国内免费   57篇
测绘学   4篇
地球物理   40篇
地质学   186篇
海洋学   7篇
自然地理   33篇
  2024年   1篇
  2023年   2篇
  2022年   4篇
  2021年   7篇
  2020年   9篇
  2019年   12篇
  2018年   8篇
  2017年   14篇
  2016年   9篇
  2015年   9篇
  2014年   7篇
  2013年   18篇
  2012年   15篇
  2011年   7篇
  2010年   3篇
  2009年   17篇
  2008年   10篇
  2007年   11篇
  2006年   16篇
  2005年   10篇
  2004年   9篇
  2003年   7篇
  2002年   10篇
  2001年   3篇
  2000年   10篇
  1999年   10篇
  1998年   7篇
  1997年   4篇
  1996年   3篇
  1995年   3篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
排序方式: 共有270条查询结果,搜索用时 187 毫秒
1.
The Late Archaean Closepet Granite batholith in south India is exposed at different crustal levels grading from greenschist facies in the north through amphibolite and granulite facies in the south along a ∼400 km long segment in the Dharwar craton. Two areas, Pavagada and Magadi, located in the Main Mass of the batholith, best represent the granitoid of the greenschist and amphibolite facies crustal levels respectively. Heat flow estimates of 38 mW m−2 from Pavagada and 25 mW m−2 from Magadi have been obtained through measurements in deep (430 and 445 m) and carefully sited boreholes. Measurements made in four boreholes of opportunity in Pavagada area yield a mean heat flow of 39 ± 4 (s.d.) mW m−2, which is in good agreement with the estimate from deep borehole. The study, therefore, demonstrates a clear-cut heat flow variation concomitant with the crustal levels exposed in the two areas. The mean heat production estimates for the greenschist facies and amphibolite facies layers constituting the Main Mass of the batholith are 2.9 and 1.8 μW m−3, respectively. The enhanced heat flow in the Pavagada area is consistent with the occurrence of a radioelement-enriched 2-km-thick greenschist facies layer granitoid overlying the granitoid of the amphibolite facies layer which is twice as thick as represented in the Magadi area. The crustal heat production models indicate similar mantle heat flow estimates in the range 12–14 mW m−2, consistent with the other parts of the greenstone-granite-gneiss terrain of the Dharwar craton.  相似文献   
2.
Geochemical analyses and geobarometric determinations have been combined to create a depth vs. radiogenic heat production database for the Sierra Nevada batholith, California. This database shows that mean heat production values first increase, then decrease, with increasing depth. Heat production is 2 μW/m3 within the 3-km-thick volcanic pile at the top of the batholith, below which it increases to an average value of 3.5 μW/m3 at 5.5 km depth, then decreases to 0.5–1 μW/m3 at 15 km depth and remains at these values through the entire crust below 15 km. Below the crust, from depths of 40–125 km, the batholith's root and mantle wedge that coevolved beneath the batholith appears to have an average radiogenic heat production rate of 0.14 μW/m3. This is higher than the rates from most published xenolith studies, but reasonable given the presence of crustal components in the arc root assemblages. The pattern of radiogenic heat production interpreted from the depth vs. heat production database is not consistent with the downward-decreasing exponential distribution predicted from modeling of surface heat flow data. The interpreted distribution predicts a reasonable range of geothermal gradients and shows that essentially all of the present day surface heat flow from the Sierra Nevada could be generated within the 35 km thick crust. This requires a very low heat flux from the mantle, which is consistent with a model of cessation of Sierran magmatism during Laramide flat-slab subduction, followed by conductive cooling of the upper mantle for 70 m.y. The heat production variation with depth is principally due to large variations in uranium and thorium concentration; potassium is less variable in concentration within the Sierran crust, and produces relatively little of the heat in high heat production rocks. Because silica content is relatively constant through the upper 30 km of the Sierran batholith, while U, Th, and K concentrations are highly variable, radiogenic heat production does not vary directly with silica content.  相似文献   
3.
The objective of study was to explore short-term trends of processes that determine land-use change in Sierra Norte of Oaxaca (SNO), Mexico. Land use and land cover changes (LULCC) were estimated in a complex mosaic of vegetation in the SNO from 1980 to 2000, and projected them to 2020 through a Markovian model. SNO is highly vulnerable to climatic change according to a 2050 GCM scenario. However, 3% annual rate of tropical and temperate forest deforestation from agriculture and livestock encroachment, suggest the threat from land-use change is higher than that from climatic change for this study site. Productive land-use strategies are needed to reduce such high deforestation rates for tropical regions. Controlling deforestation would also reduce short-term effects of CO2 emissions to the atmosphere. Because of the necessity to evaluate anthropogenic ecosystem changes, it is imperative to separate short-term influences such as deforestation, from long-term influences such as climatic change.  相似文献   
4.
The Carson River Superfund Site in west-central Nevada is an area of Hg-contaminated soil, sediment, water, air, and biola resulting from the amalgamation milling of Ag-Au ores of the Comstock lode worked approximately a century ago. In order to develop an understanding of the behavior, transport, and fate of Hg at this site, a technique was developed to estimate the proportions of total, elemental, exchangeable, organic, and sulfide Hg in soils, sediments, and tailings.Results of this analysis performed on active Carson River sediments indicate that Hg is selectively dissolved out of Hg-Au amalgam particles and subsequently adsorbed to fine-grained sediments which are then deposited in downstream, low-energy reaches of the Carson River and Labontan Reservoir. In the relatively more-reducing environment of the reservoir Hg appears to be converted, in large part, to relatively-insoluble HgS.The original elemental form of Hg released to the environment is the chemical form which is still dominant in most highly-contaminated soils, sediments, and tailings. Deeper, more-reducing soil horizons, however, appear to fix a significant portion of the Hg as HgS, analogous to the Lahontan Reservoir example described above. This fixation as HgS is documented to be largely limited to higher-sulfur areas where sulfide minerals from the Comstock ores increase the total sulfur concentrations of contaminated soils, sediments, and tailings.  相似文献   
5.
Sediment-hosted disseminated gold (SHDG) deposits comprise a major portion of the gold production and reserves in the US. Although presently known to be common only in western North America, SHDG deposits are a significant source of world gold production. These deposits are characterized by extremely fine-grained disseminated gold, hosted primarily by arsenian pyrite. Other metals show very little enrichment although in addition to As, anomalous concentrations of elements such as Sb, Hg, Tl and Ba are utilized as exploration tools. The host rocks are dominantly silty carbonates, but ore concentrations are also present in siliceous and silicified rocks as well as intrusive rocks. Alteration consists of decarbonatization, silicification (jasperoid formation) and argillization, which are arranged both spatially and temporally in that order. Argillic alteration is zoned from kaolinite-dominated cores to sericite-dominated margins. The deposits commonly exhibit significant structural (faults) and stratigraphic (composition/permeability) controls. Until the last few years, SHDG deposits were considered as near-surface, epithermal type deposits in origin. Because of their fine-grained nature and the lack of macroscopic features such as veins, it has proven quite difficult to extract geochemical data that are clearly related to their genesis. However, fluid inclusion data indicate pressures corresponding to depths of 2–4 km under lithostatic conditions. Temperatures are constrained by fluid inclusions and phase equilibria to near 225°C. Stable isotope data from alteration minerals and fluid inclusions indicate that the ore fluids were dominated by meteoric waters, some of which had clearly exchanged oxygen with wallrocks during their passage through the crust. Although the data vary, most ore fluids probably had δD values near −150‰ and δ18O values ranging from −10 to +5‰. Sulfur isotope values reported from SHDG deposits span a wide range, from −30 to +20‰ (sulfides) and 0 to >45‰ (sulfates). Ore-related sulfides (pyrite, realgar) fall at the upper end of the range reported for sulfides. The alteration and mineral assemblage indicate the ore fluids were probably near neutral and gold was likely carried as a bisulfide complex. The depositional mechanism(s) probably included mixing, cooling and oxidation. These mechanisms are consistent with the observed alteration features, i.e. quartz precipitation, calcite dissolution and sericite-kaolinite coexistence. It also explains the presence of both siliceous ores containing native Au and sulfide ores containing Au in pyrite. The extreme variations in sulfur isotopes as seen at Post and fluid inclusion data from Carlin may be indicative of some phase separation (‘boiling’), but such relations have not been documented in other deposits and the importance of phase separation to gold deposition appears minimal.  相似文献   
6.
The Cascade Lake shear zone occurs on the eastern margin of the Tuolumne Intrusive Suite, Sierra Nevada Batholith, California. Foliation in the zone is NNW trending and subvertical, and lineation is moderately south plunging. Deformation is syn-tectonic with emplacement of the Cathedral Peak granodiorite. A deformation gradient exists toward the NE margin of this pluton, with higher strains and lower temperatures of deformation found near the contact. We compare fabric data collected very densely in this shear zone using several techniques: field fabrics, 3D orientation of K-feldspar megacrysts, and AMS (anisotropy of magnetic susceptibility) analysis. In general, the results from the three different methods are in agreement. Deformation in this shear zone is part of a larger pattern of deformation within the Cathedral Peak granodiorite, as recorded by AMS analysis, and dextral shearing associated within the last stage of plutonism within the Sierra Nevada magmatic arc.  相似文献   
7.
Snow availability in Alpine catchments plays an important role in water resources management. In this paper, we propose a method for an optimal estimation of snow depth (areal extension and thickness) in Alpine systems from point data and satellite observations by using significant explanatory variables deduced from a digital terrain model. It is intended to be a parsimonious approach that may complement physical‐based methodologies. Different techniques (multiple regression, multicriteria analysis, and kriging) are integrated to address the following issues: We identify the explanatory variables that could be helpful on the basis of a critical review of the scientific literature. We study the relationship between ground observations and explanatory variables using a systematic procedure for a complete multiple regression analysis. Multiple regression models are calibrated combining all suggested model structures and explanatory variables. We also propose an evaluation of the models (using indices to analyze the goodness of fit) and select the best approaches (models and variables) on the basis of multicriteria analysis. Estimation of the snow depth is performed with the selected regression models. The residual estimation is improved by applying kriging in cases with spatial correlation. The final estimate is obtained by combining regression and kriging results, and constraining the snow domain in accordance with satellite data. The method is illustrated using the case study of the Sierra Nevada mountain range (Southern Spain). A cross‐validation experiment has confirmed the efficiency of the proposed procedure. Finally, although it is not the scope of this work, the snow depth is used to asses a first estimation of snow water equivalent resources.  相似文献   
8.
The Yanjiagou deposit, located in the central North China Craton (NCC), is a newly found porphyry‐type Mo deposit. The Mo mineralization here is spatially associated with the Mapeng batholith. In this study, we identify four stages of ore formation in this deposit: pyrite phyllic stage (I), quartz–pyrite stage (II), quartz–pyrite–molybdenite stage (III), which is the main mineralization stage, and quartz–carbonate stage (IV). We present sulphur and lead isotope data on pyrite, and rhenium and osmium isotopes of molybdenite from the porphyry deposit and evaluate the timing and origin of ore formation. The δ34S values of the pyrite range from ‐1.1‰ to −0.6‰, with an average of −0.875‰, suggesting origin from a mixture of magmatic/mantle sources and the basement rocks. The Pb isotope compositions of the pyrite show a range of 16.369 to 17.079 for 206Pb/204Pb, 15.201 to 15.355 for 207Pb/204Pb, and 36.696 to 37.380 for 208Pb/204Pb, indicating that the ore‐forming materials were derived from a mixture of lower crust (or basement rocks) and mantle. Rhenium contents in molybdenite samples from the main ore stage are between 74.73 to 254.43 ppm, with an average of 147.9 ppm, indicating a mixed crustal‐mantle source for the metal. Eight molybdenite separates yield model ages ranging from 124.17 to 130.80 Ma and a mean model age of 128.46 Ma. An isochron age of 126.7 ± 1.1 Ma (MSWD = 2.1, initial 187Os = 0.0032 ± 0.0012 ppb) is computed, which reveals a close link between the Mo mineralization and the magmatism that generated the Mapeng batholith. The age is close to the zircon U–Pb age of ca. 130 Ma from the batholith reported in a recent study. The age is also consistent with the timing of mineralization in the Fuping ore cluster in the central NCC, as well as the peak time of lithosphere thinning and destruction of the NCC. We evaluate the spatio‐temporal distribution of the Mo deposits in the NCC and identify three important molybdenum provinces along the northern and southern margins of the craton formed during three distinct episodes: Middle to Late Triassic (240–220 Ma), Early Jurassic (190–175 Ma), and Late Jurassic to Early Cretaceous (150–125 Ma). The third period is considered to mark the most important metallogenic event, coinciding with the peak of lithosphere thinning and craton destruction in the NCC. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
9.
新特提斯洋长期俯冲消减作用在早白垩世可能经历二次俯冲启动或板片俯冲几何形态的重大转换。确定西藏南部冈底斯岩基早白垩世岩浆作用的岩石地球化学特征和作用方式是甄别上述过程的关键,对理解新特提斯洋的俯冲演化过程至关重要。本文就冈底斯岩基东段朗县杂岩中保存的各类早白垩世岩浆岩,开展了锆石U-Pb地质年代学和Hf同位素、全岩元素和同位素(Sr-Nd)组成分析。数据结果表明:1)基性岩侵位时代为早白垩世晚期(103.6~100.8Ma),为高钾钙碱性偏铝质岩石,锆石εHft)=+0.3~+5.7,全岩εNdt)=-0.8和-0.3,暗示其岩浆源区具有大量俯冲沉积物或流体的混入,为沉积物熔体和流体交代的地幔楔物质部分熔融的产物,经历了一定程度的角闪石分离结晶作用;2)中性岩形成于99.8~97.6Ma,略晚于基性岩,其主量元素与基性岩具有较好的线性关系,全岩εNdt)=+1.1,具有较多的地幔物质参与,为基性岩浆进一步演化形成;3)酸性岩(脉体)记录了多阶段岩浆作用(124.1~95.3Ma),根据同位素组成不同进一步划分为两类,第一类具有较低的全岩εNdt)值(-8.3~-6.0),其岩浆源区显示富集特征,tDM2=1385~1586Ma,由古老地壳物质的再熔融形成;第二类的锆石εHft)值(-2.8~+3.2)变化较大,岩脉的锆石εHft)=+0.4~+8.1,tDM=428~906Ma,全岩εNdt)=+0.1和+0.8,表明岩浆源区具有不均一性,为古老地壳物质被富流体地幔岩浆改造形成;和4)镁铁质包体的主量元素与寄主花岗岩具有较好的线性关系,锆石的Hf同位素组成变化较大(εHft)=-9.3~+4.1),变化范围可达13个ε单位,为岩浆混合成因。寄主花岗岩和角闪辉长岩分别作为酸性和基性端元,是基性岩浆与其诱发古老地壳熔融形成的花岗质岩浆经混合形成。结合冈底斯岩基早白垩世岩浆岩的研究结果,朗县杂岩在早白垩世(124~97Ma)的岩浆作用具有明显的岩浆混合现象,锆石Hf和全岩Sr-Nd同位素组成变化较大,可达13个ε单位,其岩浆源区复杂且富含流体,代表了新特提斯洋在早期(240~144Ma)经历漫长的俯冲之后,在早白垩世时期(~120Ma)俯冲带发生跃迁或俯冲角度达到临界点,导致大量俯冲沉积物和流体沿俯冲带俯冲下去,与发生部分熔融的地幔楔物质混合,底侵导致上覆古老地壳物质的再熔融,形成早白垩世复杂的岩浆岩组合,很可能是新特提斯洋二次俯冲开始的标志。  相似文献   
10.
北秦岭灰池子花岗岩基成岩物质来源探讨   总被引:3,自引:0,他引:3  
本文主要通过Nd,Sr和O同位素示踪研究,分析了灰池子花岗岩基的成岩物质来源,初步查明该岩体的岩浆源区由69%的地幔物质和31%的陆壳物质混合而成,属壳幔型花岗岩。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号