首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   161篇
  免费   33篇
  国内免费   151篇
地球物理   12篇
地质学   320篇
海洋学   2篇
综合类   10篇
自然地理   1篇
  2024年   2篇
  2023年   4篇
  2022年   6篇
  2021年   12篇
  2020年   21篇
  2019年   23篇
  2018年   18篇
  2017年   26篇
  2016年   16篇
  2015年   20篇
  2014年   18篇
  2013年   12篇
  2012年   25篇
  2011年   19篇
  2010年   14篇
  2009年   15篇
  2008年   10篇
  2007年   8篇
  2006年   12篇
  2005年   8篇
  2004年   2篇
  2003年   11篇
  2002年   5篇
  2000年   7篇
  1999年   4篇
  1998年   5篇
  1997年   2篇
  1996年   1篇
  1995年   6篇
  1994年   2篇
  1992年   3篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
排序方式: 共有345条查询结果,搜索用时 15 毫秒
1.
Based on the theory of thermal conductivity, in this paper we derived a formula to estimate the prolongation period (AtL) of cooling-crystallization process of a granitic melt caused by latent heat of crystallization as follows:△tL=QL×△tcol/(TM-TC)×CP where TM is initial temperature of the granite melt, Tc crystallization temperature of the granite melt, Cp specific heat, △tcol cooling period of a granite melt from its initial temperature (TM) to its crystallization temperature (Tc), QL latent heat of the granite melt.
The cooling period of the melt for the Fanshan granodiorite from its initial temperature (900℃) to crystallization temperature (600℃) could be estimated -210,000 years if latent heat was not considered. Calculation for the Fanshan melt using the above formula yields a AtL value of -190,000 years, which implies that the actual cooling period within the temperature range of 900°-600℃ should be 400,000 years. This demonstrates that the latent heat produced from crystallization of the granitic melt is a key factor influencing the cooling-crystallization process of a granitic melt, prolongating the period of crystallization and resulting in the large emplacement-crystallization time difference (ECTD) in granite batholith.  相似文献   
2.
The Late Archaean Closepet Granite batholith in south India is exposed at different crustal levels grading from greenschist facies in the north through amphibolite and granulite facies in the south along a ∼400 km long segment in the Dharwar craton. Two areas, Pavagada and Magadi, located in the Main Mass of the batholith, best represent the granitoid of the greenschist and amphibolite facies crustal levels respectively. Heat flow estimates of 38 mW m−2 from Pavagada and 25 mW m−2 from Magadi have been obtained through measurements in deep (430 and 445 m) and carefully sited boreholes. Measurements made in four boreholes of opportunity in Pavagada area yield a mean heat flow of 39 ± 4 (s.d.) mW m−2, which is in good agreement with the estimate from deep borehole. The study, therefore, demonstrates a clear-cut heat flow variation concomitant with the crustal levels exposed in the two areas. The mean heat production estimates for the greenschist facies and amphibolite facies layers constituting the Main Mass of the batholith are 2.9 and 1.8 μW m−3, respectively. The enhanced heat flow in the Pavagada area is consistent with the occurrence of a radioelement-enriched 2-km-thick greenschist facies layer granitoid overlying the granitoid of the amphibolite facies layer which is twice as thick as represented in the Magadi area. The crustal heat production models indicate similar mantle heat flow estimates in the range 12–14 mW m−2, consistent with the other parts of the greenstone-granite-gneiss terrain of the Dharwar craton.  相似文献   
3.
The Yanjiagou deposit, located in the central North China Craton (NCC), is a newly found porphyry‐type Mo deposit. The Mo mineralization here is spatially associated with the Mapeng batholith. In this study, we identify four stages of ore formation in this deposit: pyrite phyllic stage (I), quartz–pyrite stage (II), quartz–pyrite–molybdenite stage (III), which is the main mineralization stage, and quartz–carbonate stage (IV). We present sulphur and lead isotope data on pyrite, and rhenium and osmium isotopes of molybdenite from the porphyry deposit and evaluate the timing and origin of ore formation. The δ34S values of the pyrite range from ‐1.1‰ to −0.6‰, with an average of −0.875‰, suggesting origin from a mixture of magmatic/mantle sources and the basement rocks. The Pb isotope compositions of the pyrite show a range of 16.369 to 17.079 for 206Pb/204Pb, 15.201 to 15.355 for 207Pb/204Pb, and 36.696 to 37.380 for 208Pb/204Pb, indicating that the ore‐forming materials were derived from a mixture of lower crust (or basement rocks) and mantle. Rhenium contents in molybdenite samples from the main ore stage are between 74.73 to 254.43 ppm, with an average of 147.9 ppm, indicating a mixed crustal‐mantle source for the metal. Eight molybdenite separates yield model ages ranging from 124.17 to 130.80 Ma and a mean model age of 128.46 Ma. An isochron age of 126.7 ± 1.1 Ma (MSWD = 2.1, initial 187Os = 0.0032 ± 0.0012 ppb) is computed, which reveals a close link between the Mo mineralization and the magmatism that generated the Mapeng batholith. The age is close to the zircon U–Pb age of ca. 130 Ma from the batholith reported in a recent study. The age is also consistent with the timing of mineralization in the Fuping ore cluster in the central NCC, as well as the peak time of lithosphere thinning and destruction of the NCC. We evaluate the spatio‐temporal distribution of the Mo deposits in the NCC and identify three important molybdenum provinces along the northern and southern margins of the craton formed during three distinct episodes: Middle to Late Triassic (240–220 Ma), Early Jurassic (190–175 Ma), and Late Jurassic to Early Cretaceous (150–125 Ma). The third period is considered to mark the most important metallogenic event, coinciding with the peak of lithosphere thinning and craton destruction in the NCC. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
4.
胶东型金矿是与壳源重熔形成的层状岩浆活动和壳幔混合岩浆活动有关的金矿床,由于成矿时所处构造位置和容矿构造不同而表现为不同的类型,涵盖破碎带蚀变岩型、石英脉型等胶东地区所有金矿床类型。玲珑花岗岩是壳源物质长期处于高温高压下且熔融形成的多物质来源层状岩体,其析出的高温碱性热液溶解金等成矿物质形成初始含矿热液。岩体抬升过程中在其边部往往容易形成拆离带,在岩体中形成脆性断裂构造,均为成矿结构面。后期壳幔混合成因的郭家岭花岗闪长岩,侵入于玲珑层状花岗岩中并一起隆升,使郭家岭花岗闪长岩附近区域的成矿结构面进一步扩大,矿液浓度进一步增大,当上升到特定深度时形成金矿体。玲珑花岗岩和郭家岭花岗闪长岩共同构成成矿地质体,重熔的玲珑层状岩体是成矿基础地质体,郭家岭花岗闪长岩加强了金矿的成矿作用。该认识对开辟胶东新的找矿思路和找矿靶区有很好的指导作用,据此初步预测新的大型拆离带是金矿集中成矿区域,可能成为将来有望取得重大突破的矿集区。  相似文献   
5.
东昆仑造山带晚古生代—早中生代由于布青山-阿尼玛卿洋的俯冲发育有大量岛弧型花岗岩类。选取东昆北巴隆地区朝火鹿陶勒盖花岗闪长岩体寄主岩和闪长质暗色微粒包体进行了岩相学、LA-ICP-MS锆石U-Pb年代学及地球化学研究。结果表明,岩体寄主岩的结晶年龄为242.3±1.3Ma,暗色微粒包体结晶年龄为241.2±0.8Ma,显示其形成于中三叠世;寄主岩和暗色微粒包体A/CNK值介于0.86~1.06之间,为准铝质-弱过铝质;稀土元素总量分别为119×10~(-6)~170×10~(-6)、189×10~(-6),稀土元素配分模式显示右倾型,具有负Eu异常;岩石富集Rb、Ba、Th等大离子亲石元素,亏损Nb、Ta、Ti等高场强元素,具有弧岩浆岩特征。野外及岩相学特征均显示包体为基性岩浆进入酸性岩浆快速冷凝形成的,为俯冲板片断离导致幔源岩浆上侵形成的岩浆混合作用的产物,是布青山-阿尼玛卿洋俯冲晚期的岩浆记录。  相似文献   
6.
内蒙古狼山山脉西侧分布有大面积的晚古生代岩浆岩,时代集中在早石炭世—晚二叠世,早石炭世角闪辉长岩、花岗闪长岩体出露于潮格温都尔镇西侧。角闪辉长岩体呈岩滴状产出,被花岗闪长岩体侵入,LA-ICP-MS锆石U-Pb年龄显示,角闪辉长岩的~(206)Pb/~(238)U加权平均年龄为329.0±2.3 Ma,花岗闪长岩的~(206)Pb/~(238)U加权平均年龄为331.1±0.9 Ma~330.0±4.2 Ma。花岗闪长岩暗色矿物以角闪石为主,富钠(Na2O=3.48%~4.46%),高钠钾比值(Na2O/K2O=1.03~2.39),钙碱性系列,P2O5-SiO_2之间存在较好的负相关性,岩石地球化学特征具Ⅰ型花岗岩的特点。Hf同位素及元素地球化学特征指示了角闪辉长岩及花岗闪长岩均来自于受地壳混染的亏损地幔,为同源岩浆演化的产物。角闪辉长岩及花岗闪长岩稀土元素配分型式一致,均为轻稀土元素富集,重稀土元素亏损,具弱的负Eu异常;角闪辉长岩富集Ba、Sr,亏损Nb、Ta、Zr、Hf;花岗闪长岩富集大离子亲石元素Rb、K、Pb、Sr,不同程度地亏损高场强元素Nb、Ta、P、Ti,总体反映了岩浆弧的地球化学特征。结合区域地质背景,早石炭世狼山地区侵入岩岩石组合为角闪辉长岩(闪长岩)+石英闪长岩+花岗闪长岩,认为狼山地区早石炭世处于大陆边缘弧构造背景。  相似文献   
7.
《Resource Geology》2018,68(1):51-64
Preservation conditions are very important for mineral systems and a suitable exhumation process is critical for endogenetic deposits, especially for those deposits formed in orogenic settings, where deposits are inclined to erode away due to strong uplift. The G uojialing batholith, intruding into the L inglong granites and the J iaodong G roup right before regional gold mineralization, is one of the most important gold ore‐hosting M esozoic intrusions in the J iaobei terrane. Gold deposits and the intrusion together underwent similar tectonothermal evolutionary processes. Exhumation and denudation process of the G uojialing granodiorite was constrained by biotite geobarometry and apatite fission track (FT ) analysis. Biotite geobarometric data yields an emplacement depth of 3.0 km, while denudation since 110 M a was calculated from the FT data at about 2.7 km. FT inverse modeling revealed a rapid uplift since ca 100 Ma. Compared with the gold ore‐forming depth which is confined between 2.5 and 9.5 km by fluid inclusion studies, great gold potential in the depths is inferred in the J iaobei terrane. Our result is consistent, to some extent, with the hypothesis of a M esozoic paleoplateau in E ast C hina.  相似文献   
8.
对南措铜金矿区与成矿相关的黑云母花岗闪长岩体进行了岩相学、锆石U-Pb年代学、岩石地球化学等方面的研究。结果表明:该岩体年龄为153.40±0.67 Ma,属晚侏罗世。岩石为准铝质-过铝质岩石,属钙碱性系列。LaN/YbN=9.31~12.65,轻重稀土元素分馏明显,δEu=1.21~1.66,Eu表现为正异常;样品微量元素表现为相对富集大离子亲石元素(LILE)K、与高场强元素(HFSE)Sr、Zr,而亏损高场强元素(HFSE)U、Nb、Ce、Nd、P的特征。岩体具有I型花岗岩特征。样品Zr/Hf值为42.23~45.82,平均值为44.2;Rb/Sr比值为0.07~0.19,平均值为0.13;Nd/Th值为1.65~2.18,平均为1.99,具壳源岩浆的特征,并有地幔物质混入。样品的Mg#值为49.80~57.22,Sr值为443.3~874.9,Yb值为0.80~1.39,Y值为8.96~16.60,Na2O/K2O2(2.18~2.97),为洋壳型埃达克岩,并在上升过程中可能有少量地幔楔物质混入。结合前人研究成果认为,该花岗闪长岩形成于晚侏罗世班公湖—怒江洋盆向北俯冲的火山弧环境。  相似文献   
9.
新特提斯洋长期俯冲消减作用在早白垩世可能经历二次俯冲启动或板片俯冲几何形态的重大转换。确定西藏南部冈底斯岩基早白垩世岩浆作用的岩石地球化学特征和作用方式是甄别上述过程的关键,对理解新特提斯洋的俯冲演化过程至关重要。本文就冈底斯岩基东段朗县杂岩中保存的各类早白垩世岩浆岩,开展了锆石U-Pb地质年代学和Hf同位素、全岩元素和同位素(Sr-Nd)组成分析。数据结果表明:1)基性岩侵位时代为早白垩世晚期(103.6~100.8Ma),为高钾钙碱性偏铝质岩石,锆石εHft)=+0.3~+5.7,全岩εNdt)=-0.8和-0.3,暗示其岩浆源区具有大量俯冲沉积物或流体的混入,为沉积物熔体和流体交代的地幔楔物质部分熔融的产物,经历了一定程度的角闪石分离结晶作用;2)中性岩形成于99.8~97.6Ma,略晚于基性岩,其主量元素与基性岩具有较好的线性关系,全岩εNdt)=+1.1,具有较多的地幔物质参与,为基性岩浆进一步演化形成;3)酸性岩(脉体)记录了多阶段岩浆作用(124.1~95.3Ma),根据同位素组成不同进一步划分为两类,第一类具有较低的全岩εNdt)值(-8.3~-6.0),其岩浆源区显示富集特征,tDM2=1385~1586Ma,由古老地壳物质的再熔融形成;第二类的锆石εHft)值(-2.8~+3.2)变化较大,岩脉的锆石εHft)=+0.4~+8.1,tDM=428~906Ma,全岩εNdt)=+0.1和+0.8,表明岩浆源区具有不均一性,为古老地壳物质被富流体地幔岩浆改造形成;和4)镁铁质包体的主量元素与寄主花岗岩具有较好的线性关系,锆石的Hf同位素组成变化较大(εHft)=-9.3~+4.1),变化范围可达13个ε单位,为岩浆混合成因。寄主花岗岩和角闪辉长岩分别作为酸性和基性端元,是基性岩浆与其诱发古老地壳熔融形成的花岗质岩浆经混合形成。结合冈底斯岩基早白垩世岩浆岩的研究结果,朗县杂岩在早白垩世(124~97Ma)的岩浆作用具有明显的岩浆混合现象,锆石Hf和全岩Sr-Nd同位素组成变化较大,可达13个ε单位,其岩浆源区复杂且富含流体,代表了新特提斯洋在早期(240~144Ma)经历漫长的俯冲之后,在早白垩世时期(~120Ma)俯冲带发生跃迁或俯冲角度达到临界点,导致大量俯冲沉积物和流体沿俯冲带俯冲下去,与发生部分熔融的地幔楔物质混合,底侵导致上覆古老地壳物质的再熔融,形成早白垩世复杂的岩浆岩组合,很可能是新特提斯洋二次俯冲开始的标志。  相似文献   
10.
北秦岭灰池子花岗岩基成岩物质来源探讨   总被引:3,自引:0,他引:3  
本文主要通过Nd,Sr和O同位素示踪研究,分析了灰池子花岗岩基的成岩物质来源,初步查明该岩体的岩浆源区由69%的地幔物质和31%的陆壳物质混合而成,属壳幔型花岗岩。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号