首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   242篇
  免费   18篇
  国内免费   120篇
地球物理   54篇
地质学   303篇
海洋学   12篇
天文学   2篇
综合类   1篇
自然地理   8篇
  2024年   2篇
  2023年   1篇
  2022年   12篇
  2021年   5篇
  2020年   12篇
  2019年   9篇
  2018年   10篇
  2017年   9篇
  2016年   4篇
  2015年   14篇
  2014年   7篇
  2013年   17篇
  2012年   18篇
  2011年   4篇
  2010年   10篇
  2009年   18篇
  2008年   16篇
  2007年   30篇
  2006年   33篇
  2005年   29篇
  2004年   17篇
  2003年   9篇
  2002年   12篇
  2001年   11篇
  2000年   6篇
  1999年   8篇
  1998年   13篇
  1997年   10篇
  1996年   6篇
  1995年   5篇
  1994年   3篇
  1993年   5篇
  1992年   3篇
  1991年   4篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1985年   1篇
排序方式: 共有380条查询结果,搜索用时 625 毫秒
1.
 The Middle Jurassic Kirkpatrick flood basalts and comagmatic Ferrar intrusions in the Transantarctic Mountains represent a major pulse of tholeiitic magmatism related to early stages in the breakup of Gondwana. A record of the volcano-tectonic events leading to formation of this continental flood-basalt province is provided by strata underlying and only slightly predating the Kirkpatrick lavas. In the central Transantarctic Mountains, the lavas rest on widespread (≥7500 km2) tholeiitic pyroclastic deposits of the Prebble Formation. The Prebble Formation is dominated by lahar deposits and is an unusual example of a regionally developed basaltic lahar field. Related, partly fault-controlled pyroclastic intrusions cut underlying strata, and vents are represented by the preserved flanks of two small tephra cones associated with a volcanic neck. Lahar and air-fall deposits typically contain 50–60% accidental lithic fragments and sand grains derived from underlying Triassic – Lower Jurassic strata in the upper part of the Beacon Supergroup. Juvenile basaltic ash and fine lapilli consist of nonvesicular to scoriaceous tachylite, sideromelane, and palagonite, and have characteristics indicating derivation from hydrovolcanic eruptions. The abundance of accidental debris from underlying Beacon strata points to explosive phreatomagmatic interaction of basaltic magma with wet sediment and groundwater, which appears to have occurred in particular where rising magma intersected upper Beacon sand aquifers. Composite clasts in the lahar deposits exhibit complex peperitic textures formed during fine-scale intermixing of basaltic magma with wet sand and record steps in subsurface fuel-coolant interactions leading to explosive eruption. The widespread, sustained phreatomagmatic activity is inferred to have occurred in a groundwater-rich topographic basin linked to an evolving Jurassic rift zone in the Transantarctic Mountains. Coeval basaltic phreatomagmatic deposits of the Mawson and Exposure Hill Formations, which underlie exposures of the Kirkpatrick Basalt up to 1500 km to the north along strike in Victoria Land, appear to represent other parts of a regional, extension-related Middle Jurassic phreatomagmatic province which developed immediately prior to rapid outpouring of the flood basalts. This is consistent with models which assign an important role to lithospheric stretching in the generation of flood-basalt provinces. Received: 28 August 1995 / Accepted: 18 April 1996  相似文献   
2.
The Emeishan continental flood basalt (ECFB) sequence in Dongchuan, SW China comprises a basal tephrite unit overlain by an upper tholeiitic basalt unit. The upper basalts have high TiO2 contents (3.2–5.2 wt.%), relatively high rare-earth element (REE) concentrations (40 to 60 ppm La, 12.5 to 16.5 ppm Sm, and 3 to 4 ppm Yb), moderate Zr/Nb and Nb/La ratios (9.3–10.2 and 0.6–0.9, respectively) and relatively high Nd (t) values, ranging from − 0.94 to 2.3, and are comparable to the high-Ti ECFB elsewhere. The tephrites have relatively high P2O5 (1.3–2.0 wt.%), low REE concentrations (e.g., 17 to 23 ppm La, 4 to 5.3 ppm Sm, and 2 to 3 ppm Yb), high Nb/La (2.0–3.9) ratios, low Zr/Nb ratios (2.3–4.2), and extremely low Nd (t) values (mostly ranging from − 10.6 to − 11.1). The distinct compositional differences between the tephrites and the overlying tholeiitic basalts cannot be explained by either fractional crystallization or crustal contamination of a common parental magma. The tholeiitic basalts formed by partial melting of the Emeishan plume head at a depth where garnet was stable, perhaps > 80 km. We propose that the tephrites were derived from magmas formed when the base of the previously metasomatized, volatile-mineral bearing subcontinental lithospheric mantle was heated by the upwelling mantle plume.  相似文献   
3.
New chronological, geochemical, and isotopic data are reported for Triassic (219–236 Ma) adakite-magnesian andesite-Nb-enriched basaltic rock associations from the Tuotuohe area, central Qiangtang terrane. The adakites and magnesian andesites are characterized by high Sr/Y (25–45), La/Yb (14–42) and Na2O/K2O (12–49) ratios, high Al2O3 (15.34–18.28 wt%) and moderate to high Sr concentrations (220–498 ppm) and εND (t) (+0.86 to +1.21) values. Low enrichments of Th, Rb relative to Nb, and subequal normalized Nb and La contents, and enrichments of light rare earth elements combine to distinguish a group of Nb-enriched basaltic rocks (NEBs). They have positive εND (t) (+2.57 to +5.16) values. Positive correlations between Th, La and Nb and an absence of negative Nb anomalies on mantle normalized plots indicate the NEBs are products of a mantle source metasomatized by a slab melt rather than by hydrous fluids. A continuous compositional variation between adakites and magnesian andesites confirms slab melt interaction with mantle peridotite. The spatial association of the NEBs with adakites and magnesian andesites define an “adakitic metasomatic volcanic series” recognized in many demonstrably subduction-related environments (e.g., Mindanao arc, Philippines; Kamchatka arc, Russia; and southern Baja California arc, Mexico). The age of the Touhuohe suite, and its correlation with Triassic NEB to the north indicates that volcanism derived from subduction-modified mantle was abundant prior to 220 Ma in the central Qiangtang terrane.  相似文献   
4.
To investigate eclogite melting under mantle conditions, wehave performed a series of piston-cylinder experiments usinga homogeneous synthetic starting material (GA2) that is representativeof altered mid-ocean ridge basalt. Experiments were conductedat pressures of 3·0, 4·0 and 5·0 GPa andover a temperature range of 1200–1600°C. The subsolidusmineralogy of GA2 consists of garnet and clinopyroxene withminor quartz–coesite, rutile and feldspar. Solidus temperaturesare located at 1230°C at 3·0 GPa and 1300°C at5·0 GPa, giving a steep solidus slope of 30–40°C/GPa.Melting intervals are in excess of 200°C and increase withpressure up to 5·0 GPa. At 3·0 GPa feldspar, rutileand quartz are residual phases up to 40°C above the solidus,whereas at higher pressures feldspar and rutile are rapidlymelted out above the solidus. Garnet and clinopyroxene are theonly residual phases once melt fractions exceed 20% and garnetis the sole liquidus phase over the investigated pressure range.With increasing melt fraction garnet and clinopyroxene becomeprogressively more Mg-rich, whereas coexisting melts vary fromK-rich dacites at low degrees of melting to basaltic andesitesat high melt fractions. Increasing pressure tends to increasethe jadeite and Ca-eskolaite components in clinopyroxene andenhance the modal proportion of garnet at low melt fractions,which effects a marked reduction in the Al2O3 and Na2O contentof the melt with pressure. In contrast, the TiO2 and K2O contentsof the low-degree melts increase with increasing pressure; thusNa2O and K2O behave in a contrasted manner as a function ofpressure. Altered oceanic basalt is an important component ofcrust returned to the mantle via plate subduction, so GA2 maybe representative of one of many different mafic lithologiespresent in the upper mantle. During upwelling of heterogeneousmantle domains, these mafic rock-types may undergo extensivemelting at great depths, because of their low solidus temperaturescompared with mantle peridotite. Melt batches may be highlyvariable in composition depending on the composition and degreeof melting of the source, the depth of melting, and the degreeof magma mixing. Some of the eclogite-derived melts may alsoreact with and refertilize surrounding peridotite, which itselfmay partially melt with further upwelling. Such complex magma-genesisconditions may partly explain the wide spectrum of primitivemagma compositions found within oceanic basalt suites. KEY WORDS: eclogite; experimental petrology; mafic magmatism; mantle melting; oceanic basalts  相似文献   
5.
In the mid-fifteenth century, one of the largest eruptions of the last 10 000 years occurred in the Central New Hebrides arc, forming the Kuwae caldera (12x6 km). This eruption followed a late maar phase in the pre-caldera edifice, responsible for a series of alternating hydromagmatic deposits and airfall lapilli layers. Tuffs related to caldera formation ( 120 m of deposits on a composite section from the caldera wall) were emitted during two main ignimbritic phases associated with two additional hydromagmatic episodes. The lower hydromagmatic tuffs from the precaldera maar phase are mainly basaltic andesite in composition, but clasts show compositions ranging from 48 to 60% SiO2. The unwelded and welded ashflow deposits from the ignimbritic phases and the associated intermediate and upper hydromagmatic deposits also show a wide compositional range (60–73% SiO2), but are dominantly dacitic. This broad compositional range is thought to be due to crystal fractionation. The striking evolution from one eruptive style (hydromagmatic) to the other (magmatic with emission of a large volume of ignimbrites) which occurred either over the tuff series as a whole, or at the beginning of each ignimbritic phase, is the most impressive characteristic of the caldera-forming event. This strongly suggests triggering of the main eruptive phases by magma-water interaction. A three-step model of caldera formation is presented: (1) moderate hydromagmatic (sequences HD 1–4) and magmatic (fallout deposits) activity from a central vent, probably over a period of months or years, affected an area slightly wider than the present caldera. At the end of this stage, intense seismic activity and extrusion of differentiated magma outside the caldera area occurred; (2) unhomogenized dacite was released during a hydromagmatic episode (HD 5). This was immediately followed by two major pyroclastic flows (PFD 1 and 2). The vents spread and intense magma-water interaction at the beginning of this stage decreased rapidly as magma discharge increased. Subsequent collapse of the caldera probably commenced in the southeastern sector of the caldera; (3) dacitic welded tuffs were emplaced during a second main phase (WFD 1–5). At the beginning of this phase, magma-water interaction continued, producing typical hydromagmatic deposits (HD 6). Caldera collapse extended to the northern part of the caldera. Previous C14 dates and records of explosive volcanism in ice from the south Pole show that the climactic phase of this event occurred in 1452 A.D.  相似文献   
6.
Vlag  P.  Vandamme  D.  Rochette  P.  Spinelli  C. 《Geologie en Mijnbouw》1997,76(1-2):21-33
For his PhD. thesis, Zijderveld (1975) studied the paleomagnetism of the Permian Esterel rocks (southern France). High-quality thermal and alternating-field demagnetization diagrams were interpreted to determine the direction of the characteristic natural magnetization. For the Esterel volcanics, a mean direction of Dec = 206.5°, Inc = –23°, 95 = 5.7°, k = 112 was found for this magnetization. The dispersion in this mean is remarkably low. Only the declination of the Reyran Rhyolite in the Reyran River quarry clearly deviated from this mean. This deviating direction is not found in our samples, taken at the same site. As many faults occur in this quarry, it is suggested that Zijderveld sampled this rhyolite on a small rotated block. To verify whether the small dispersion in the mean paleomagnetic direction of the Esterel rocks has a geomagnetic or a rock-magnetic origin, two conglomerate tests were carried out. One of these might be interpreted as positive. The results of the other conglomerate test (Agay Formation) are ambiguous: four of the six measured boulders show directions close to the mean paleomagnetic direction of the Esterel rocks. Rock-magnetic measurements show that the remanence is carried by a magnetite and a hematite fraction. The low dispersion in the paleomagnetic directions, the conglomerate tests, and hematite as remanence carrier suggest that the characteristic remanence in the Esterel volcanics was not instantaneously acquired during cooling, but might be affected by remagnetization due to weathering.  相似文献   
7.
肖龙  许继峰 《岩石学报》2005,21(6):1539-1545
川西北松潘-甘孜地块内二叠世大石包组玄武岩富集大离子亲石元素和高场强元素,具有与洋岛玄武岩相似的地球化学性质,形成于大陆板内环境。通过与典型峨眉山玄武岩之地球化学组成的对比研究,认为大石包玄武岩与峨眉山玄武岩中的高钛类玄武岩性质相同,两者具有一个共同的成因,即都是峨眉山地幔柱活动的产物。由此推测峨眉山玄武岩不仅分布在扬子地块内部,向西还有一定的延伸,同时暗示了峨眉山地幔柱头部可能具有比现在所认识的更大的规模。  相似文献   
8.
新疆东昆仑木孜塔格蛇绿混杂岩中发现富Nb玄武岩   总被引:4,自引:2,他引:4  
富Nb 玄武岩以相对高的TiO2 含量、低的LILE/HFSE和LREE/HFSE比值以及(La/Nb)MN<2为特征,是岛弧环境的典型产物。首次报道发现于新疆东昆仑木孜塔格蛇绿混杂岩中的富Nb玄武岩,并分析了它们的典型地球化学特征和构造环境,表明了它们形成在岛弧环境。  相似文献   
9.
New paleomagnetic investigations on the Ethiopian trap series have been undertaken at the Abbay and Kessem gorges in an attempt to better constrain the 30 Ma paleomagnetic pole of Africa. We sampled six thick massive basaltic lava flows, totaling 230 m, from Abbay Gorge and 10 lava flows, 180 m in thickness, from Kessem Gorge. Detailed paleomagnetic analyses disclosed that the carriers of the characteristic remanent magnetization (ChRM) are different in different lava flows. These are mostly titanomagnetites, titanomaghemites, and magnetite minerals with a broad range of coercive force and blocking temperatures. The heating and cooling susceptibility vs. temperature curves, many of which are irreversible, may indicate chemical remagnetization, notably low temperature maghemitization. Only one flow (KS04) with a clear 580°C Curie temperature was apparently unaffected by chemical remagnetization. The ChRM direction of this flow is identical to that in other flows, which suggests that if and when remagnetization occurred, this was shortly after emplacement of the lava flows. All of the flows sampled have normal polarity. However, a reversed component of low to medium coercive force and low to medium unblocking temperature occurs in flow KS01 at Kessem Gorge. The ChRM directions for the 16 sites are D=3.1°, I=5.8° (α95=12.7°). The paleomagnetic pole obtained from these is at λ=83.0°N, φ=193.3°E (A95=9.0°). Comparison with three previous studies of the traps shows remarkable consistency and a number of means are derived and discussed. Two final preferred poles for the traps are at λ=79.0°N, φ=196.9°E (A95=2.8°) when all 112 published flows are used, and λ=78.7°N, φ=209.4°E (A95=3.4°) when only the 76 flows from the four more recently analyzed sections are included. Both are compatible with the recent reference synthetic pole for Africa of Courtillot and Besse [J. Geophys. Res. (2002) in press]. In that sense, the Ethiopian trap pole is not anomalous and does not require more of a non-dipolar contribution than indicated by analyses of the global paleomagnetic data base covering the last few million years.  相似文献   
10.
Ocean Drilling Program (ODP) Hole 504B near the Costa Rica Rift is the deepest hole drilled in the ocean crust, penetrating a volcanic section, a transition zone and a sheeted dike complex. The distribution of Li and its isotopes through this 1.8-km section of oceanic crust reflects the varying conditions of seawater alteration with depth. The upper volcanic rocks, altered at low temperatures, are enriched in Li (5.6-27.3 ppm) and have heavier isotopic compositions (δ7Li=6.6-20.8‰) relative to fresh mid-ocean ridge basalt (MORB) due to uptake of seawater Li into alteration clays. The Li content and isotopic compositions of the deeper volcanic rocks are similar to MORB, reflecting restricted seawater circulation in this section. The transition zone is a region of mixing of seawater with upwelling hydrothermal fluids and sulfide mineralization. Li enrichment in this zone is accompanied by relatively light isotopic compositions (−0.8-2.1‰) which signify influence of basalt-derived Li during mineralization and alteration. Li decreases with depth to 0.6 ppm in the sheeted dike complex as a result of increasing hydrothermal extraction in the high-temperature reaction zone. Rocks in the dike complex have variable isotopic values that range from −1.7 to 7.9‰, depending on the extent of hydrothermal recrystallization and off-axis low-temperature alteration. Hydrothermally altered rocks are isotopically light because 6Li is preferentially retained in greenschist and amphibolite facies minerals. The δ7Li values of the highly altered rocks of the dike complex are complementary to those of high-temperature mid-ocean ridge vent fluids and compatible to equilibrium control by the alteration mineral assemblage. The inventory of Li in basement rocks permits a reevaluation of the role of oceanic crust in the budget of Li in the ocean. On balance, the upper 1.8 km of oceanic crusts remains a sink for oceanic Li. The observations at 504B and an estimated flux from the underlying 0.5 km of gabbro suggest that the global hydrothermal flux is at most 8×109 mol/yr, compatible with geophysical thermal models. This work defines the distribution of Li and its isotopes in the upper ocean crust and provides a basis to interpret the contribution of subducted lithosphere to arc magmas and cycling of crustal material in the deep mantle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号