首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   131篇
  免费   92篇
  国内免费   44篇
测绘学   1篇
大气科学   1篇
地球物理   124篇
地质学   134篇
海洋学   4篇
天文学   1篇
综合类   2篇
  2023年   4篇
  2022年   1篇
  2021年   2篇
  2020年   5篇
  2019年   6篇
  2018年   5篇
  2017年   9篇
  2016年   4篇
  2015年   7篇
  2014年   12篇
  2013年   10篇
  2012年   11篇
  2011年   9篇
  2010年   2篇
  2009年   12篇
  2008年   10篇
  2007年   19篇
  2006年   19篇
  2005年   11篇
  2004年   24篇
  2003年   11篇
  2002年   11篇
  2001年   4篇
  2000年   6篇
  1999年   8篇
  1998年   4篇
  1997年   5篇
  1996年   5篇
  1995年   7篇
  1994年   5篇
  1993年   4篇
  1992年   5篇
  1991年   1篇
  1990年   1篇
  1988年   3篇
  1987年   1篇
  1984年   1篇
  1982年   1篇
  1978年   2篇
排序方式: 共有267条查询结果,搜索用时 218 毫秒
1.
青藏高原及邻近区域的S波三维速度结构   总被引:25,自引:5,他引:20  
周兵  秦建业 《地球物理学报》1991,34(4):426-441,T001
本文收集了WWSSN台网和我国台网中13个地震台站的长周期地震记录,用140条10-90s瑞利波频散曲线和作者提出的Tarantola-Backus面波频散层析成象方法,作了青藏高原及邻区的速度反演,得出该地区岩石层速度结构的三维图象.结果表明,1.在10-110km深度范围内,速度结构出现与大地构造特征相关的分区性,显示出四个构造单元:青藏块体、柴达木-巴颜喀拉-三江块体、塔里木块体和印度块体.2.高原内部,深度为10-70km内速度较低,莫霍界面呈不对称盆形分布,藏北那曲附近地壳厚度超过70km,高原边缘壳厚为45-50km,90-110km为高速异常,表明高原内部存在上地幔盖层.3.高原北部的班公湖断裂和东部的三江断裂系是该区重要的分界线,是岩石层结构存在明显差异的重要接触部位,可能是冈瓦纳古陆与欧亚古陆的缝合带.4.柴达木-巴颜喀拉-三江块体内部速度分布不均匀,地壳厚度由北向南从45km加深到60km;在深度90-110km存在一低速层.5.塔里木地块内速度随深度均匀增加,从地壳到上地幔110km内没有发现低速层.地壳厚度约50km.  相似文献   
2.
Christophe Pascal   《Tectonophysics》2006,425(1-4):83-99
Gravitational potential stresses (GPSt) are known to play a first-order role in the state of stress of the Earth's lithosphere. Previous studies focussed mainly on crust elevation and structure and little attention has been paid to modelling GPSt using realistic lithospheric structures. The aim of the present contribution is to quantify gravitational potential energies and stresses associated with stable lithospheric domains. In order to model realistic lithosphere structures, a wide variety of data are considered: surface heat flow, chemical depletion of mantle lithosphere, crustal thickness and elevation. A numerical method is presented which involves classical steady-state heat equations to derive lithosphere thickness, geotherm and density distribution, but additionally requires the studied lithosphere to be isostatically compensated at its base. The impact of varying surface and crustal heat flow, topography, Moho depth and crust density on the signs and magnitudes of predicted GPSt is systematically explored. In clear contrast with what is assumed in most previous studies, modelling results show that the density structure of the mantle lithosphere has a significant impact on the value of the predicted GPSt, in particular in the case of thick lithospheres. Using independent information from the literature, the method was applied to get insights in the state of stress of continental domains with contrasting tectono-thermal ages. The modelling results suggest that in the absence of tectonic stresses Phanerozoic and Proterozoic lithospheres are spontaneously submitted to compression whereas Archean lithospheres are in a neutral to slightly tensile stress state. These findings are in general in good agreement with global stress measurements and observed geoid undulations.  相似文献   
3.
Backstripping analysis and forward modeling of 162 stratigraphic columns and wells of the Eastern Cordillera (EC), Llanos, and Magdalena Valley shows the Mesozoic Colombian Basin is marked by five lithosphere stretching pulses. Three stretching events are suggested during the Triassic–Jurassic, but additional biostratigraphical data are needed to identify them precisely. The spatial distribution of lithosphere stretching values suggests that small, narrow (<150 km), asymmetric graben basins were located on opposite sides of the paleo-Magdalena–La Salina fault system, which probably was active as a master transtensional or strike-slip fault system. Paleomagnetic data suggesting a significant (at least 10°) northward translation of terranes west of the Bucaramanga fault during the Early Jurassic, and the similarity between the early Mesozoic stratigraphy and tectonic setting of the Payandé terrane with the Late Permian transtensional rift of the Eastern Cordillera of Peru and Bolivia indicate that the areas were adjacent in early Mesozoic times. New geochronological, petrological, stratigraphic, and structural research is necessary to test this hypothesis, including additional paleomagnetic investigations to determine the paleolatitudinal position of the Central Cordillera and adjacent tectonic terranes during the Triassic–Jurassic. Two stretching events are suggested for the Cretaceous: Berriasian–Hauterivian (144–127 Ma) and Aptian–Albian (121–102 Ma). During the Early Cretaceous, marine facies accumulated on an extensional basin system. Shallow-marine sedimentation ended at the end of the Cretaceous due to the accretion of oceanic terranes of the Western Cordillera. In Berriasian–Hauterivian subsidence curves, isopach maps and paleomagnetic data imply a (>180 km) wide, asymmetrical, transtensional half-rift basin existed, divided by the Santander Floresta horst or high. The location of small mafic intrusions coincides with areas of thin crust (crustal stretching factors >1.4) and maximum stretching of the subcrustal lithosphere. During the Aptian–early Albian, the basin extended toward the south in the Upper Magdalena Valley. Differences between crustal and subcrustal stretching values suggest some lowermost crustal decoupling between the crust and subcrustal lithosphere or that increased thermal thinning affected the mantle lithosphere. Late Cretaceous subsidence was mainly driven by lithospheric cooling, water loading, and horizontal compressional stresses generated by collision of oceanic terranes in western Colombia. Triassic transtensional basins were narrow and increased in width during the Triassic and Jurassic. Cretaceous transtensional basins were wider than Triassic–Jurassic basins. During the Mesozoic, the strike-slip component gradually decreased at the expense of the increase of the extensional component, as suggested by paleomagnetic data and lithosphere stretching values. During the Berriasian–Hauterivian, the eastern side of the extensional basin may have developed by reactivation of an older Paleozoic rift system associated with the Guaicáramo fault system. The western side probably developed through reactivation of an earlier normal fault system developed during Triassic–Jurassic transtension. Alternatively, the eastern and western margins of the graben may have developed along older strike-slip faults, which were the boundaries of the accretion of terranes west of the Guaicáramo fault during the Late Triassic and Jurassic. The increasing width of the graben system likely was the result of progressive tensional reactivation of preexisting upper crustal weakness zones. Lateral changes in Mesozoic sediment thickness suggest the reverse or thrust faults that now define the eastern and western borders of the EC were originally normal faults with a strike-slip component that inverted during the Cenozoic Andean orogeny. Thus, the Guaicáramo, La Salina, Bitúima, Magdalena, and Boyacá originally were transtensional faults. Their oblique orientation relative to the Mesozoic magmatic arc of the Central Cordillera may be the result of oblique slip extension during the Cretaceous or inherited from the pre-Mesozoic structural grains. However, not all Mesozoic transtensional faults were inverted.  相似文献   
4.
The origin of the Baikal rift zone (BRZ) has been debated between the advocates of passive and active rifting since the 1970s. A re-assessment of the relevant geological and geophysical data from Russian and international literature questions the concept of broad asthenospheric upwelling beneath the rift zone that has been the cornerstone of many “active rifting” models. Results of a large number of early and recent studies favour the role of far-field forces in the opening and development of the BRZ. This study emphasises the data obtained through studies of peridotite and pyroxenite xenoliths brought to the surface by alkali basaltic magmas in southern Siberia and central Mongolia. These xenoliths are direct samples of the upper mantle in the vicinity of the BRZ. Of particular importance are suites of garnet-bearing xenoliths that have been used to construct PT- composition lithospheric cross-sections in the region for the depth range of 35–80 km.Xenolith studies have shown fundamental differences in the composition and thermal regime between the lithospheric mantle beneath the ancient Siberian platform (sampled by kimberlites) and beneath younger mobile belts south of the platform. The uppermost mantle in southern Siberia and central Mongolia is much hotter at similar levels than the mantle in the Siberian craton and also has significantly higher contents of ‘basaltic’ major elements (Ca, Al, Na) and iron, higher Fe/Si and Fe/Mg. The combination of the moderately high geothermal gradient and the fertile compositions in the off-cratonic mantle appears to be a determining factor controlling differences in sub-Moho seismic velocities relative to the Siberian craton. Chemical and isotopic compositions of the off-cratonic xenoliths indicate small-scale and regional mantle heterogeneities attributed to various partial melting and enrichment events, consistent with long-term evolution in the lithospheric mantle. Age estimates of mantle events based on Os–Sr–Nd isotopic data can be correlated with major regional stages of crustal formation and may indicate long-term crust–mantle coupling. The ratios of 143/144Nd in many LREE-depleted xenoliths are higher than those in MORB or OIB source regions and are not consistent with a recent origin from asthenospheric mantle.Mantle xenoliths nearest to the rift basins (30–50 km south of southern Lake Baikal) show no unequivocal evidence for strong heating, unusual stress and deformation, solid state flow, magmatic activity or partial melting that could be indicative of an asthenospheric intrusion right below the Moho. Comparisons between xenoliths from older and younger volcanic rocks east of Lake Baikal, together with observations on phase transformations and mineral zoning in individual xenoliths, have indicated recent heating in portions of the lithospheric mantle that may be related to localised magmatic activity or small-scale ascent of deep mantle material. Overall, the petrographic, PT, chemical and isotopic constraints from mantle xenoliths appear to be consistent with recent geophysical studies, which found no evidence for a large-scale asthenospheric upwarp beneath the rift, and lend support to passive rifting mechanism for the BRZ.  相似文献   
5.
Subsidence mechanisms that may have controlled the evolution of the eastern Black Sea have been studied and simulated using a numerical model that integrates structural, thermal, isostatic and surface processes in both two- (2-D) and three-dimensions (3-D). The model enables the forward modelling of extensional basin evolution followed by deformation due to subsequent extensional and compressional events. Seismic data show that the eastern Black Sea has evolved via a sequence of interrelated tectonic events that began with early Tertiary rifting followed by several phases of compression, mainly confined to the edges of the basin. A large magnitude (approximately 12 km) of regional subsidence also occurred in the central basin throughout the Tertiary. Models that simulate the magnitude of observed fault controlled extension (β=1.13) do not reproduce the total depth of the basin. Similarly, the modelling of compressional deformation around the edges of the basin does little to enhance subsidence in the central basin. A modelling approach that quantifies lithosphere extension according to the amount of observed crustal thinning and thickening across the basin provides the closest match to overall subsidence. The modelling also shows that deep crustal and mantle–lithosphere processes can significantly influence the rate and magnitude of syn- to post-rift subsidence and shows that such mechanisms may have played an important role in forming the anomalously thin syn-rift and thick Miocene–Quaternary sequences observed in the basin. It is also suggested that extension of a 40–45 km thick pre-rift crust is required to generate the observed magnitude of total subsidence when considering a realistic bathymetry.  相似文献   
6.
国内外岩石圈化学组成的编图研究还处于探索阶段。笔者从岩石圈化学结构的思路出发 ,提出了编图的 3个地球化学指标 (铅同位素组成、T2DM 和同位素年代学 )和表示方法。以秦岭—大别造山带为例 ,同位素组成图可以反映构造分区和地壳生长历史 ,对造山过程和深部壳幔相互作用也有明确的显示 ;结合地质年代学的资料 ,化学结构平面图具有反映时空演化四维信息的能力。  相似文献   
7.
P. Peltonen  K. A. Kinnunen  H. Huhma 《Lithos》2002,63(3-4):151-164
Diamondiferous Group A eclogites constitute a minor portion of the mantle-derived xenoliths in the eastern Finland kimberlites. They have been derived from the depth interval 150–230 km where they are inferred to occur as thin layers or small pods within coarse-grained garnet peridotites. The chemical and isotopic composition of minerals suggest that they represent (Proterozoic?) mantle-derived melts or cumulates rather than subducted oceanic lithosphere. During magma ascent and emplacement of the kimberlites, the eclogite xenoliths were mechanically and chemically rounded judging from the types of surface markings. In addition, those octahedral crystal faces of diamonds that were partially exposed from the rounded eclogite xenolith became covered by trigons and overlain by microlamination due to their reaction with the kimberlite magma. The diamonds bear evidence of pervasive plastic deformation which is not, however, evident in the eclogite host. This suggests that annealing at ambient lithospheric temperatures has effectively recrystallised the silicates while the diamond has retained its lattice imperfections and thus still has the potential to yield information about ancient mantle deformation. One of our samples is estimated to contain approximately 90,000 ct/ton diamond implying that some diamonds occur within very high-grade pods or thin seams in the lithospheric mantle. To our knowledge, this is one of the most diamondiferous samples described.  相似文献   
8.
华北板内深部构造   总被引:9,自引:0,他引:9  
华北板块的形成经历了早前寒武纪、燕山期及喜马拉雅期3个主要构造发展期,由于华北板块自身运动及所受应力场的作用,加之上地幔岩石圈的不均一性等因素,在中、新生代形成许多特殊的板内构造块。综合应用地质、地球物理和地球化学的成果,对华北板内深部结构进行了研究。从深部构造角度划分出6个金及金金属成矿带、4个金刚石成矿带,并对华北地区的地震及地热资源与新生事大陆裂谷的关系进行了探讨。  相似文献   
9.
K. O. Hoal   《Lithos》2003,71(2-4):259-272
Two populations of mantle xenoliths from the Proterozoic Premier kimberlite show an absence of potassic metasomatism common in Phanerozoic kimberlites. The Premier samples are relatively enriched in Fe and Ti, and contain Fe mica and aluminous amphibole instead of Mg-phlogopite and K-richterite. These features are consistent with a recently identified ρ wave anomaly beneath this part of the Kaapvaal craton ascribed to refertilization of the mantle. Upwelling of sublithospheric mantle to produce the Bushveld Igneous Complex is considered to be the source of silicate melt available for metasomatism. The resultant refertilized Fe-, Ti-, and Al-enriched mantle composition resembles that which is required to form Proterozoic troctolitic magmas.  相似文献   
10.
The thermal structure of Archean and Proterozoic lithospheric terranes in southern Africa during the Mesozoic was evaluated by thermobarometry of mantle peridotite xenoliths erupted in alkaline magmas between 180 and 60 Ma. For cratonic xenoliths, the presence of a 150–200 °C isobaric temperature range at 5–6 GPa confirms original interpretations of a conductive geotherm, which is perturbed at depth, and therefore does not record steady state lithospheric mantle structure.

Xenoliths from both Archean and Proterozoic terranes record conductive limb temperatures characteristic of a “cratonic” geotherm (40 mW m−2), indicating cooling of Proterozoic mantle following the last major tectonothermal event in the region at 1 Ga and the probability of thick off-craton lithosphere capable of hosting diamond. This inference is supported by U–Pb thermochronology of lower crustal xenoliths [Schmitz and Bowring, 2003. Contrib. Mineral. Petrol. 144, 592–618].

The entire region then suffered a protracted regional heating event in the Mesozoic, affecting both mantle and lower crust. In the mantle, the event is recorded at 150 Ma to the southeast of the craton, propagating to the west by 108–74 Ma, the craton interior by 85–90 Ma and the far southwest and northwest by 65–70 Ma. The heating penetrated to shallower levels in the off-craton areas than on the craton, and is more apparent on the southern margin of the craton than in its western interior. The focus and spatial progression mimic inferred patterns of plume activity and supercontinent breakup 30–100 Ma earlier and are probably connected.

Contrasting thermal profiles from Archean and Proterozoic mantle result from penetration to shallower levels of the Proterozoic lithosphere by heat transporting magmas. Extent of penetration is related not to original lithospheric thickness, but to its more fertile character and the presence of structurally weak zones of old tectonism. The present day distribution of surface heat flow in southern Africa is related to this dynamic event and is not a direct reflection of the pre-existing lithospheric architecture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号