首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1128篇
  免费   188篇
  国内免费   508篇
测绘学   2篇
大气科学   3篇
地球物理   104篇
地质学   1639篇
海洋学   15篇
天文学   4篇
综合类   15篇
自然地理   42篇
  2024年   6篇
  2023年   27篇
  2022年   58篇
  2021年   65篇
  2020年   72篇
  2019年   94篇
  2018年   91篇
  2017年   89篇
  2016年   75篇
  2015年   73篇
  2014年   65篇
  2013年   162篇
  2012年   111篇
  2011年   54篇
  2010年   58篇
  2009年   61篇
  2008年   81篇
  2007年   55篇
  2006年   62篇
  2005年   50篇
  2004年   71篇
  2003年   45篇
  2002年   25篇
  2001年   26篇
  2000年   31篇
  1999年   24篇
  1998年   34篇
  1997年   31篇
  1996年   24篇
  1995年   18篇
  1994年   21篇
  1993年   27篇
  1992年   9篇
  1991年   8篇
  1990年   5篇
  1989年   4篇
  1988年   3篇
  1987年   3篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
排序方式: 共有1824条查询结果,搜索用时 185 毫秒
1.
Two distinct age estimates for eclogite-facies metamorphism in the Sanbagawa belt have been proposed: (i) c.  120–110 Ma based on a zircon SHRIMP age for the Western Iratsu unit and (ii) c.  88–89 Ma based on a garnet–omphacite Lu–Hf isochron age from the Seba and Kotsu eclogite units. Despite the contrasting estimates of formation ages, petrological studies suggest the formation conditions of the Western Iratsu unit are indistinguishable from those of the other two units—all ∼20 kbar and 600–650 °C. Studies of the associated geological structures suggest the Seba and Western Iratsu units are parts of a larger semi-continuous eclogite unit. A combination of geochronological and petrological studies for the Western Iratsu eclogite offers a resolution to this discrepancy in age estimates. New Lu–Hf dating for the Western Iratsu eclogite yields an age of 115.9 ± 0.5 Ma that is compatible with the zircon SHRIMP age. However, petrological studies show that there was significant garnet growth in the Western Iratsu eclogite before eclogite facies metamorphism, and the early core growth is associated with a strong concentration of Lu. Pre-eclogite facies garnet (Grt1) includes epidote–amphibolite facies parageneses equilibrated at 550–650 °C and ∼10 kbar, and this is overgrown by prograde eclogite facies garnet (Grt2). The Lu–Hf age of c.  116 Ma is strongly skewed to the isotopic composition of Grt1 and is interpreted to reflect the age of the pre-eclogite phase. The considerable time gap ( c.  27 Myr) between the two Lu–Hf ages suggests they may be related to separate tectonic events or distinct phases in the evolution of the Sanbagawa subduction zone.  相似文献   
2.
The Cycladic blueschist belt in the central Aegean Sea has experienced high‐pressure (HP) metamorphism during collisional processes between the Apulian microplate and Eurasia. The general geological and tectonometamorphic framework is well documented, but one aspect which is yet not sufficiently explored is the importance of HP mélanges which occur within volcano‐sedimentary successions. Unresolved issues concern the range in magmatic and metamorphic ages recorded by mélange blocks and the significance of eventual pre‐Eocene HP metamorphism. These aspects are here addressed in a U‐Pb zircon study focusing on the block–matrix association exposed on the island of Syros. Two gneisses from a tectonic slab of this mélange, consisting of an interlayered felsic gneiss‐glaucophanite sequence, yielded zircon 206Pb/238U ages of 240.1 ± 4.1 and 245.3 ± 4.9 Ma, respectively, similar to Triassic ages determined on zircon in meta‐volcanic rocks from structurally coherent sequences elsewhere in the Cyclades. This strongly suggests that parts of these successions have been incorporated in the mélanges and provides the first geochronological evidence that the provenance of mélange blocks/slabs is neither restricted to a single source nor confined to fragments of oceanic lithosphere. Zircon from a jadeitite and associated alteration zones (omphacitite, glaucophanite and chlorite‐actinolite rock) all yielded identical 206Pb/238U ages of c. 80 Ma. Similar Cretaceous U‐Pb zircon ages previously reported for mélange blocks have been interpreted by different authors to reflect magmatic or metamorphic ages. The present study adds a further argument in favour of the view that zircon formed newly in some rock types at c. 80 Ma, due to hydrothermal or metasomatic processes in a subduction zone environment, and supports the interpretation that the Cycladic blueschist belt records both Cretaceous and Eocene HP episodes and not only a single Tertiary HP event.  相似文献   
3.
Abstract Petrological, oxygen isotope and 40Ar/39Ar studies were used to constrain the Tertiary metamorphic evolution of the lower tectonic unit of the Cyclades on Tinos. Polyphase high-pressure metamorphism reached pressures in excess of 15 kbar, based on measurements of the Si content in potassic white mica. Temperatures of 450–500° C at the thermal peak of high-pressure metamorphism were estimated from critical metamorphic assemblages, the validity of which is confirmed by a quartz–magnetite oxygen isotope temperature of 470° C. Some 40Ar/39Ar spectra of white mica give plateau ages of 44–40 Ma that are considered to represent dynamic recrystallization under peak or slightly post-peak high-pressure metamorphic conditions. Early stages in the prograde high-pressure evolution may be documented by older apparent ages in the high-temperature steps of some spectra. Eclogite to epidote blueschist facies mineralogies were partially or totally replaced by retrograde greenschist facies assemblages during exhumation. Oxygen isotope thermometry of four quartz–magnetite pairs from greenschist samples gives temperatures of 440–470° C which cannot be distinguished from those deduced for the high-pressure event. The exhumation and overprint is documented by decreasing ages of 32–28 Ma in some greenschists and late-stage blueschist rocks, and ages of 30–20 Ma in the lower temperature steps of the Ar release patterns of blueschist micas. Almost flat parts of Ar–Ar release spectra of some greenschist micas gave ages of 23–21 Ma which are assumed to represent incomplete resetting caused by a renewed prograde phase of greenschist metamorphism. Oxygen isotope compositions of blueschist and greenschist facies minerals show no evidence for the infiltration of a δ18O-enriched fluid. Rather, the compositions indicate that fluid to rock ratios were very low, the isotopic compositions being primarily controlled by those of the protolith rocks. We assume that the fundamental control catalysing the transformation of blueschists into greenschists and the associated resetting of their isotopic systems was the selective infiltration of metamorphic fluid. A quartz–magnetite sample from a contact metamorphic skarn, taken near the Miocene monzogranite of Tinos, gave an oxygen isotope temperature of 555° C and calculated water composition of 9.1%. The value of δ18O obtained from this water is consistent with a primary magmatic fluid, but is lower than that of fluids associated with the greenschist overprint, which indicates that the latter event cannot be directly related to the monozogranite intrusion.  相似文献   
4.
A complex of channels underlying the Baginton-Lillington Gravel (Baginton Formation) at Waverley Wood Quarry, Warwickshire is described. Fossil pollen and plant macrofossils, Coleoptera, Ostracoda, Mollusca and Mammalia are described from the channel-fill deposits. Consideration of all the evidence allows the identification of four separate stages of channel fill which largely occurred under a cool temperate climate. At the top of Channel 2 evidence for a cold, continental climatic episode can be recognised, suggesting that the whole complex was deposited under a fluctuating climate at the end of a temperate stage. At two levels in the channels human artefacts were recovered confirming the presence of Palaeolithic people in Warwickshire during the deposition of the sediments. Amino-acid geochronology suggests an age within the ‘Cromerian Complex’ Stage for the channels. The small vertebrate and molluscan faunas indicate that the deposits are no older than the latter part of the ‘Cromerian Complex’ Stage of East Anglia. The regional stratigraphic significance of the Waverley Wood succession is outlined.  相似文献   
5.
The zoned pluton from Castelo Branco consists of Variscan peraluminous S-type granitic rocks. A muscovite>biotite granite in the pluton's core is surrounded successively by biotite>muscovite granodiorite, porphyritic biotite>muscovite granodiorite grading to biotite=muscovite granite, and finally by muscovite>biotite granite. ID-TIMS U–Pb ages for zircon and monazite indicate that all phases of the pluton formed at 310 ± 1 Ma. Whole-rock analyses show slight variation in 87Sr/86Sr310 Ma between 0.708 and 0.712, Nd310 Ma values between − 1 and − 4 and δ18O values between 12.2 and 13.6. These geological, mineralogical, geochemical and isotopic data indicate a crustal origin of the suite, probably from partial melting of heterogeneous Early Paleozoic pelitic country rock. In detail there is evidence for derivation from different sources, but also fractional crystallization linking some of internal plutonic phases. Least-squares analysis of major elements and modelling of trace elements indicate that the porphyritic granodiorite and biotite=muscovite granite were derived from the granodiorite magma by fractional crystallization of plagioclase, quartz, biotite and ilmenite. By contrast variation diagrams of major and trace elements in biotite and muscovite, the behaviours of Ba in microcline and whole-rock δ18O, the REE patterns of rocks and isotopic data indicate that both muscovite-dominant granites were probably originated by two distinct pulses of granite magma.  相似文献   
6.
B. Seth  S. Jung  B. Gruner   《Lithos》2008,104(1-4):131-146
Three dating techniques for metamorphic minerals using the Sm–Nd, Lu–Hf and Pb isotope systems are combined and interpreted in context with detailed petrologic data from crustal segments in NW Namibia. The combination of isochron ages using these different approaches is a valuable tool to testify for the validity of metamorphic mineral dating. Here, PbSL, Lu–Hf and Sm–Nd garnet ages obtained on low- to medium-grade metasedimentary rocks from the Central Kaoko Zone of the Neoproterozoic Kaoko belt (NW Namibia) indicate that these samples were metamorphosed at around 550–560 Ma. On the other hand, granulite facies metasedimentary rocks from the Western Kaoko Zone underwent two phases of high-grade metamorphism, one at ca. 660–625 Ma and another at ca. 550 Ma providing substantial evidence that the 660–625 Ma-event was indeed a major tectonothermal episode in the Kaoko belt. Our age data suggest that interpreting metamorphic ages by applying a single dating method only is not reliable enough when studying complex metamorphic systems. However, a combination of all three dating techniques used here provides a reliable basis for geochronological age interpretation.  相似文献   
7.
Ion-microprobe U–Pb analyses of 589 detrital zircon grains from 14 sandstones of the Alborz mountains, Zagros mountains, and central Iranian plateau provide an initial framework for understanding the Neoproterozoic to Cenozoic provenance history of Iran. The results place improved chronological constraints on the age of earliest sediment accumulation during Neoproterozoic–Cambrian time, the timing of the Mesozoic Iran–Eurasia collision and Cenozoic Arabia–Eurasia collision, and the contribution of various sediment sources of Gondwanan and Eurasian affinity during opening and closure of the Paleotethys and Neotethys oceans. The zircon age populations suggest that deposition of the extensive ~ 1 km-thick clastic sequence at the base of the cover succession commenced in latest Neoproterozoic and terminated by Middle Cambrian time. Comparison of the geochronological data with detrital zircon ages for northern Gondwana reveals that sediment principally derived from the East African orogen covered a vast region encompassing northern Africa and the Middle East. Although most previous studies propose a simple passive-margin setting for Paleozoic Iran, detrital zircon age spectra indicate Late Devonian–Early Permian and Cambrian–Ordovician magmatism. These data suggest that Iran was affiliated with Eurasian magmatic arcs or that rift-related magmatic activity during opening of Paleotethys and Neotethys was more pronounced than thought along the northern Gondwanan passive-margin. For a Triassic–Jurassic clastic overlap assemblage (Shemshak Formation) in the Alborz mountains, U–Pb zircon ages provide chronostratigraphic age control requiring collision of Iran with Eurasia by late Carnian–early Norian time (220–210 Ma). Finally, Cenozoic strata yield abundant zircons of Eocene age, consistent with derivation from arc magmatic rocks related to late-stage subduction and/or breakoff of the Neotethys slab. Together with the timing of foreland basin sedimentation in the Zagros, these detrital zircon ages help bracket the onset of the Arabia–Eurasia collision in Iran between middle Eocene and late Oligocene time.  相似文献   
8.
Structural, petrographic and geochronologic studies of the Kampa Dome provide insights into the tectonothermal evolution of orogenic crust exposed in the North Himalayan gneiss domes of southern Tibet. U–Pb ion microprobe dating of zircons from granite gneiss exposed at the deepest levels within the dome yields concordia 206Pb/238U age populations of 506 ± 3 Ma and 527 ± 6 Ma, with no evidence of new zircon growth during Himalayan orogenesis. However, the granite contains penetrative deformation fabrics that are also preserved in the overlying Paleozoic strata, implying that the Kampa granite is a Cambrian pluton that was strongly deformed and metamorphosed during Himalayan orogenesis. Zircons from deformed leucogranite sills that cross-cut Paleozoic metasedimentary rocks yield concordant Cambrian ages from oscillatory zoned cores and discordant ages ranging from ca. 491–32 Ma in metamict grains. Since these leucogranites clearly post-date the metasedimentary rocks they intrude, the zircons are interpreted as xenocrysts that are probably derived from the Kampa granite. The Kampa Dome formed via a series of progressive orogenic events including regional ~ N–S contraction and related crustal thickening (D1), predominately top-to-N ductile shearing and crustal extension (D2), top-to-N brittle–ductile faulting and related folding on the north limb of the dome, localized top-to-S faulting on the southern limb of the dome, and crustal doming (D3), and continued N–S contraction, E–W extension and doming (D4). Structural and geochronologic variability amongst adjacent North Himalayan gneiss domes may reflect changes in the magnitude of crustal exhumation along the North Himalayan antiform, possibly relating to differences in the mid-crustal geometry of the exhuming fault systems.  相似文献   
9.
10.
Isotopic-geochronological study of the Pliocene magmatic activity in western part of the Dzhavakheti Highland (northwestern region of the Lesser Caucasus) is carried out. The results obtained imply that the Pliocene magmatic activity lasted in this part of the highland approximately 2 million years from 3.75 to 1.75–1.55 Ma. As is established, the studied volcanic rocks correspond in composition mostly to K-Na subalkaline and more abundant normal basalts. Time constraints of main phases in development of basic volcanism within the study region are figured out. We assume that individual pulses of silicic to moderately silicic volcanism presumably took place in the Dzhavakheti Highland about 3.2 and 2.5 Ma ago.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号