首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   23篇
  国内免费   26篇
地球物理   9篇
地质学   115篇
海洋学   15篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2020年   2篇
  2019年   3篇
  2018年   3篇
  2017年   3篇
  2016年   5篇
  2015年   6篇
  2014年   11篇
  2013年   9篇
  2012年   5篇
  2011年   15篇
  2010年   5篇
  2009年   10篇
  2008年   5篇
  2007年   9篇
  2006年   9篇
  2005年   6篇
  2004年   6篇
  2003年   3篇
  2002年   2篇
  2001年   4篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1997年   5篇
  1995年   2篇
排序方式: 共有139条查询结果,搜索用时 15 毫秒
1.
The regionally extensive, coarse-grained Bakhtiyari Formation represents the youngest synorogenic fill in the Zagros foreland basin of Iran. The Bakhtiyari is present throughout the Zagros fold-thrust belt and consists of conglomerate with subordinate sandstone and marl. The formation is up to 3000 m thick and was deposited in foredeep and wedge-top depocenters flanked by fold-thrust structures. Although the Bakhtiyari concordantly overlies Miocene deposits in foreland regions, an angular unconformity above tilted Paleozoic to Miocene rocks is expressed in the hinterland (High Zagros).

The Bakhtiyari Formation has been widely considered to be a regional sheet of Pliocene–Pleistocene conglomerate deposited during and after major late Miocene–Pliocene shortening. It is further believed that rapid fold growth and Bakhtiyari deposition commenced simultaneously across the fold-thrust belt, with limited migration from hinterland (NE) to foreland (SW). Thus, the Bakhtiyari is generally interpreted as an unmistakable time indicator for shortening and surface uplift across the Zagros. However, new structural and stratigraphic data show that the most-proximal Bakhtiyari exposures, in the High Zagros south of Shahr-kord, were deposited during the early Miocene and probably Oligocene. In this locality, a coarse-grained Bakhtiyari succession several hundred meters thick contains gray marl, limestone, and sandstone with diagnostic marine pelecypod, gastropod, coral, and coralline algae fossils. Foraminiferal and palynological species indicate deposition during early Miocene time. However, the lower Miocene marine interval lies in angular unconformity above ~ 150 m of Bakhtiyari conglomerate that, in turn, unconformably caps an Oligocene marine sequence. These relationships attest to syndepositional deformation and suggest that the oldest Bakhtiyari conglomerate could be Oligocene in age.

The new age information constrains the timing of initial foreland-basin development and proximal Bakhtiyari deposition in the Zagros hinterland. These findings reveal that structural evolution of the High Zagros was underway by early Miocene and probably Oligocene time, earlier than commonly envisioned. The age of the Bakhtiyari Formation in the High Zagros contrasts significantly with the Pliocene–Quaternary Bakhtiyari deposits near the modern deformation front, suggesting a long-term (> 20 Myr) advance of deformation toward the foreland.  相似文献   

2.
库车前陆褶皱冲断带自北向南可分为基底冲断带、箱状背斜带、梳状背斜带和挠曲褶皱带,东西方向上可分为西段、中段和东段。本文分段叙述了各变形带的变形特征,指出东段箱状背斜带不发育,秋里塔格山脉(构造带)东延未进入东段,因而总体看自西向东变形强度减弱,地形上趋于夷平。该冲断带的形成经历了两次重大的冲断活动,分别发生在中新世和早(-中)更新世;相应地,该带可分为南、北两个"盆""山"亚系统,两者在地层记录、变形期次和变形机制上尚有若干差异。库车前陆褶皱冲断带的发育,除了受南天山的冲断和向南扩展引起的近南北向挤压应力场控制外,还受到基底断裂在新生代的活化和膏盐层底辟的制约,前者以近北西向的构造变换带及其共轭发育的近北东向断层最为重要,后者既控制了秋里塔格山脉的形成(主要受垂直的挤压应力场作用),也在库车前陆褶皱冲断带东西方向的变形分段中起了重要作用。文章还讨论了变形与地貌发育的关系和在油气勘探中的指导意义。  相似文献   
3.
Fission-track cooling ages of detrital apatite (AFT) in the East Alpine Molasse Basin display age groups corresponding to geodynamic events in the orogen since Jurassic times. These age groups are typical of certain thermotectonic units, which formed a patchwork in the Swiss and Eastern Alps. By a combination of petrographic and thermochronologic data, progressive erosion of source terrains is monitored in different catchments since the Oligocene. The AFT cooling ages show a decrease in lag time until when rapidly cooled debris derived from tectonically exhumed core complexes became exposed. After termination of tectonic exhumation, lag times of debris derived from the core complexes increased. Neither on the scale of the entire Eastern Alps, or on the scale of individual catchments, steady-state exhumation is observed, due to the highly dynamic changes of exhumation rates since Late Eocene collision.  相似文献   
4.
鄂尔多斯西缘前陆盆地上古生界沉积相特征研究   总被引:3,自引:0,他引:3  
赵培坤  纪友亮 《新疆地质》2005,23(2):152-157,i006
在层序地层学研究的基础上,对鄂尔多斯盆地西缘逆冲构造带上古生界进行了详细的沉积相研究.分析出该地发育了6种沉积相,分别为碳酸盐潮坪相、障壁砂坝-泻湖相、河口湾相、三角洲相、河流相、湖泊相.并按上古生界识别出的2个二级层序,推测出沉积相的平面展布特征,总结出鄂尔多斯盆地西缘地区,晚古生代沉积演化经历了拗拉槽再活动背景下的裂谷海湾充填、陆表海充填和内陆坳陷充填3个发展阶段.并结合构造、物源供给、海侵、古气候等条件分析了鄂尔多斯西缘前陆盆地上古生界沉积相演化的控制因素.  相似文献   
5.
Whether the formation of the isolated sand body deposition in the forebulge area of a foreland basin system is structure- or deposition-controlled has puzzled geologists for decades, although sand body deposition is generally believed to be indicative of the position of the flexural forebulge in a foreland basin. The formation of a modern sand body in the forebulge area is thus examined by multi-scale geophysical observations based on combined reflection seismic profiles and compressed high-intensity radar pulse (CHIRP) profiles across the sand deposition along the forebulge of the Western Taiwan Foreland Basin (WTFB), which is a Late Miocene-present foreland basin in the overfilled stage. These profiles suggest that the accumulation of the sand deposits along the forebulge of the WTFB is not directly associated with forebulge faultings. The relief map of the forebulge deposit substratum shows a northwestward tilting slope, and the isopach of the forebulge sand body indicates that a large part of the sand body accumulated along the axis of the Taiwan Strait and the subdued forebulge of the WTFB. The difference between the prevailing directions of tidal currents between the Taiwan Strait and the East China Sea reflects the probable sedimentary influence of the cratonward migrating fold-thrust belt within a foreland shelf. We suggest that the formation and distribution of the sand deposits along the forebulge of the WTFB are generally controlled not only by the transverse downslope sedimentation but also longitudinal hydrodynamic processes at distal parts of the foreland basin. Our explanation provides a plausible tectono-sedimentary cause of the sand body deposition in the forebulge area in an overfilled foreland basin. The sedimentary dynamics of the sand body in the Taiwan Strait may be applicable for understanding the formation of isolated sand bodies in the distal part of the Cretaceous Western Interior Foreland Basin.  相似文献   
6.
Diagenesis is an essential tool to reconstruct the development of reservoir rocks. Diagenetic processes - precipitation and dissolution - have an influence on pore space. The present paper aims to study the diagenetic history of deep-marine sandstones of the Austrian Alpine Foreland Basin. To reach that goal, sediment petrology and diagenetic features of more than 110 sandstone samples from water- and gas-bearing sections from gas fields within the Oligocene-Miocene Puchkirchen Group and Hall Formation has been investigated. Special emphasis was put on samples in the vicinity of the gas-water contact (GWC). The sediment petrography of sandstones of Puchkirchen Group and Hall Formation is similar; hence their diagenesis proceeded the same way. In fact, primary mineralogy was controlled by paleo-geography with increasing transport distance and diverse detrital input.Sediment petrographically, investigated sandstones from the water-bearing horizon seemed quite comparable to the gas-bearing sediments. In general, they can be classified as feldspatic litharenites to litharenites and display porosities of up to 30% and permeabilities of up to 1300 mD. The carbon and oxygen isotopic composition of bulk carbonate cements from these sandstones range from−3.8 to +2.2 and from −7.5 to +0.2‰ [VPDB]. However, near the Gas-Water Contact (GWC) a horizon with low porosities (<3%) and permeabilities (<0.1 mD) is present. This zone is completely cemented with calcite, which has a blocky/homogenous morphology. A slight, but significant negative shift in δ18O isotopy (−2.5‰) is evident.During early diagenesis the first carbonate generations formed. First a fibrous calcite and afterwards a micritic calcite precipitated. Further siliciclastic minerals, such as quartz and feldspar (K-feldspar and minor plagioclase), exhibit corroded grains. Occasionally, clay minerals (illite; smectite, chlorite) formed as rims around detrital grains. Late diagenesis is indicated by the formation of a low permeable zone at the GWC.  相似文献   
7.
Continuous exposure in the Pindos mountain chain (Greece) and the detailed stratigraphic measurements in the area enable us to construct eight balanced cross sections across the Pindos Fold-and-thrust belt (PFTB) and to approach quantitatively some parameters which controlled foreland evolution. The 160-km-wide passive continental margin of the Apulian continent in Greece was progressively shortened from east to west at rates of 6 mm/year between the Early Oligocene and Late Eocene. From the rear to the frontal part of the wedge, fault-bend folds, duplexes and imbricates were formed, while strain was partitioned into faulting (~34%), layer parallel shortening (~23%) and buckling (~9%). Foreland subsidence and internal deformation of the orogenic wedge are strongly affected by two parameters of equal importance: the thrust load of the overthrusted microcontinents and the rigidity of the underthrusted Apulian passive margin. Changes in the thickness of the pre-orogenic sediments and reactivated transform faults induced salients. During the Lower Miocene, the orogenic wedge in the Peloponnese suffered additional uplift and westward gravitational gliding induced by the intracontinental subduction of the Palaeozoic rift zone of the Phyllite-Quartzite Series, which was reactivated and returned to the earths surface during the Hellenic orogeny.  相似文献   
8.
关于南天山碰撞造山时代的讨论   总被引:7,自引:1,他引:6  
南天山是天山山脉的一支,是中亚型造山带的典型代表,它经历了复杂的增生—碰撞过程。关于古南天山洋最终闭合—碰撞造山(碰撞事件)发生的时间一直存在不同的认识,争论由来已久。综合分析南天山造山带的构造、地层、古生物、岩石、地球化学和同位素年代学等方面的资料,特别是对放射虫、蛇绿岩、蓝片岩、火山弧及前陆盆地沉积等地质事实的研究,我们认为,南天山碰撞造山作用起始于二叠纪末—三叠纪初。  相似文献   
9.
大别山高压-超高压岩石折返与扬子北缘构造变形的关系   总被引:5,自引:4,他引:1  
大别山造山带及其"前陆"形成于三叠纪,是华北陆块与扬子地块经长期构造演化、最终碰撞的产物。研究表明,该"前陆"实际是扬子地块中部的九岭基底隆升带演化相关的褶皱-逆冲推覆构造带。综合横贯大别山造山带的大地电磁探测、宽角反射与折射地震探测、天然地震波(P波)层析成像研究、莫霍面地震反射图像,揭示大别山造山带及扬子地块北缘的地壳物性、速度结构、莫霍面错断、变形特征等,发现该区上、下地壳结构具有不一致性,总体表现为鱼骨刺状;并结合地表地质调查,推断扬子地块北缘深层向南逆冲的构造与大别山超高压变质岩的形成及折返过程密切相关,而浅部构造向北的逆冲推覆构造与大别山造山带向南的逆冲推覆构成对冲构造样式。最后,本文讨论了该区大地构造演化和背景,分析了其动力学机制。  相似文献   
10.
The Plio-Pleistocene succession of the Venice area represents part of the infill of a foreland region located between three mountain chains: the Northern Apennines, the Southern Alps and the Dinarides. This structural setting favored the development of a complex stratigraphic architecture of the succession, mostly due to the conveying of sediments from the Southern Alps to the north and the Northern Apennines to the south, in particular since the activation of strong subsidence related to the NE-ward migration of the Apennine foredeep in the early Pleistocene. Accordingly, the studied succession is composed of five third-order sequences mostly controlled by tectonics, the most recent of which display complex patterns due to the interfingering of sedimentary bodies showing contrasting directions of progradation and pinch-out. Despite this, the sequence stratigraphic method still can be applied in the present context, allowing to recognize diagnostic stratal architectures and reconstruct the relative sea-level history of the region. Moreover, the recognized peculiar stratigraphic architecture of the basin fill may serve as an analogue that needs to be taken into account to predict the distribution of porous coarse-grained sedimentary units in similar contexts, aiding for a profitable exploration and production of reservoirs and source/sealing rocks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号