首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  国内免费   1篇
地质学   10篇
海洋学   2篇
  2020年   2篇
  2011年   2篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
  1996年   1篇
排序方式: 共有12条查询结果,搜索用时 31 毫秒
1.
The spatial variability of porosity and permeability was determined for a section in the uppermost Maastrichtian chalk exposed in the Sigerslev quarry at Stevns Klint. The aims were threefold: (1) to quantify the spatial variability pattern and its link to geology by applying systematic variogram analysis procedure, (2) to detect potential cyclicity in the petrophysical properties in this pure and overtly homogeneous chalk, and (3) to compare the section with chalk reservoirs in the North Sea in order to asses to what extent this onshore sequence has a potential as an analogue of the offshore, more deeply buried chalk reservoirs. The interval is of comparable stratigraphic age to the uppermost reservoir zones in the Tor Formation of the North Sea chalk reservoirs. The variability and spatial correlation of porosity and permeability in both horizontal and vertical directions are interpreted in a geological context and show indications of small-scale heterogeneity at 15–25 cm scale, but the clear cyclic layering described from other chalk deposits is not recognised at this locality. The investigated outcrop is not a close analogue to North Sea reservoir chalk, but some aspects are common including basic material properties, porosity/permeability trends and the variability pattern. The outcrop has a potential as analogue for some of the onshore subsurface chalk successions at shallow burial depth that form important aquifers.  相似文献   
2.
The Abu Ruweis Formation is composed of carbonates, evaporites, and mudstones, with some locally developed pelletic, oolitic and stromatolitic limestones. The lateral persistence of bedding, the purity of the evaporite rocks, the alternating arrangement of marine carbonates and evaporites indicates periodic deposition in subaqueous conditions (salina). Petrographic investigations, X-ray diffraction analysis as well as chemical analysis have shown that the outcropping evaporite beds are mainly composed of secondary gypsum, with rare anhydrite relics. Five microfacies of gypsum were recognized according to their fabrics: porphyroblastic and granoblastic gypsum showing polarization texture, gypsum pseudomorph after anhydrite laths, and satin spar gypsum. The textures they display indicate a hydration origin of precursor anhydrite, which is in turn rehydrated from primary gypsum. Some of these anhydrites were formed as a result of replacement processes of the carbonate sediments associated with the evaporites, as evidenced from the textural relationships of the carbonate and sulfate minerals. The O18 content ranges from 1.45 to 8.38% PDB and the C13 content ranges from −1.52 to 4.73% PDB. Trace elements analysis has shown that the Abu Ruweis dolomites are rich in strontium (up to 600 ppm), and sodium (up to 835 ppm). The isotope composition and trace elements content, as well as the petrographic characteristics point to a penecontemporaneous hypersaline dolomitization origin for the Abu Ruweis dolomites. The evaporites were deposited during a regressive lowstand systems tract, whereas the carbonates were deposited under shallow water marine conditions during a highstand systems tract. The Abu Ruweis succession represents a relatively stable arid climate within a rapidly subsiding basin. Restricted conditions were provided by the development of beach barriers.  相似文献   
3.
ABSTRACT A number of non‐marine evaporite units composed of primary gypsum were deposited in saline lakes that developed in the southern Teruel Basin (NE Spain) during the Miocene. In the basin depocentre, a continuum of lacustrine evaporite lithofacies influenced by the activity of organisms is displayed. The Libros Gypsum was deposited in a deep lake, in which water stratification became unstable with progressive shoaling. Rhythmites, composed of laminae of pelletal gypsum and laminae of very fine lenticular gypsum crystals mixed with siliceous microorganisms, formed in addition to gypsum turbidites, intraformational gypsum breccias and slump structures. The pelletal laminae originated from the faecal activity of animals (crustaceans?) ingesting gypsum crystallites in the lake water during episodes of maximum evaporation, whereas the laminae of very fine lenticular gypsum mixed with microorganisms accumulated during episodes of relative dilution. In the wide marginal zones of the basin, the Libros Gypsum unit consists of massive to thin‐bedded bioturbated gypsum and thin‐bedded clotted gypsum, which formed in intermediate to very shallow (palustrine) water depths. The bioturbated gypsum lithofacies were produced by the action of diverse organisms, presumably worms and coleopterans, and chironomid larvae to a lesser extent; the massive lithofacies precipitated in very shallow water; and the thin‐bedded lithofacies formed in shallow to deeper settings. The thin‐bedded clotted gypsum is a relatively deep facies that may have diverse origins (e.g. bioturbation, compaction, disruption of soft sediments and early diagenesis). There is a well‐developed metre‐scale cyclicity in the marginal lake sequences, which is not observed in the inner lake deposits. This suggests a depth control in the various lacustrine subenvironments to record cyclic evaporitic processes. The isotopic composition of the gypsum indicates early sulphate‐reducing bacterial activity in the bottom of the lake and suggests that the sulphate was derived from the chemical recycling of Triassic evaporites of the country rocks.  相似文献   
4.
The stratigraphy of carbonate/shale couplets, cycles and cycle-stacking patterns in a Cambrian shallow water platform (Iberian Chains, NE Spain) are related to sea-level changes driven by orbital forcing and by tectonic pulses. The interplay of both effects can be discriminated in the Iberian fault-controlled platform, in which the tectonic activity can be analysed by accurate and detailed biostratigraphic correlations based on trilobite zonation. The stratigraphic hierarchy of rhythmically interbedded limestones and shales, in two coeval but structurally separated geodynamic settings, yields cycle ratios of 1.44 :1. This ratio is supported by time thickness and spectral analysis, which is based on a graphic method of analysis: the Map of Grey Lines. The cycle ratio seems to be evidence for orbital forcing by obliquity and precession cycles predicted for early Paleozoic time. Carbonate/shale couplets, the smallest rhythmic units recognisable in the field, represent short-term, periodic fluctuations in supply of terrigenous sediments and carbonate productivity of uncertain origin, which could be associated with one of several harmonics of the former orbital cycles. The pulsating tectonic activity was approximated by using a quantitative analysis of tectonically induced subsidence (Shaw method). Recurrence frequencies of tectonic pulses were estimated and dated by biostratigraphy. As a result, tectonic disturbances in the Cambrian Iberian platform show an episodic periodicity comparable to that of orbital eccentricity cycles, which could mask their recognition. Received: 15 November 1999 / Accepted: 9 February 2000  相似文献   
5.
共生生金菌的生长具有周期性的变化特征,与锰相互作用也表现出了周期性的变化规律。该细菌影响着含锰溶液体系的pH和Eh,能将低价态的锰氧化为高价态的锰。细菌氧化锰主要借助于各种酶和不同代谢物的作用而完成。  相似文献   
6.
The Pliocene–Pleistocene peripheral marine basins of the Mediterranean Sea in southern Italy, from Basilicata and western Calabria to northern and eastern Sicily, represent tectonically formed coastal embayments and narrow straits. Here, units of cross‐stratified, mixed silici–bioclastic sand, 25 to 80 m thick, record strong tidal currents. The Central Mediterranean Sea has had a microtidal range of ca 35 cm, and the local amplification of the tidal wave is attributed to tides enhanced in some of the bays and to the out‐of‐phase reversal of the tidal prism in narrow straits linking the Tyrrhenian and Ionian basins. The siliciclastic sediment was generated by local bedrock erosion, whereas the bioclastic sediment was derived from the contemporaneous, foramol‐type cool‐water carbonate factories. The cross‐strata sets represent small to medium‐sized (10 to 60 cm thick) two‐dimensional dunes with mainly unidirectional foreset dip directions. These tidalites differ from the classical tidal rhythmites deposited in mud‐bearing siliciclastic environments. Firstly, the foreset strata lack mud drapes and, instead, show segregation of siliciclastic and bioclastic sand into alternating strata. Secondly, the thickness variation of the successive silici–bioclastic strata couplets, measured over accretion intervals of 2 to 3 m and analysed statistically, reveal only the shortest‐term, diurnal and semi‐diurnal tidal cycles. Thirdly, the record of diurnal and semi‐diurnal tidal cycles is included within the pattern of neap‐spring cycles. Differences between these sediments and classical tidal rhythmites are attributed to the specific palaeogeographic setting of a microtidal sea, with the tidal currents locally enhanced in peripheral basins. It is suggested that this particular facies of mud‐free, silici–bioclastic arenite rhythmites in the stratigraphic record might indicate a specific type of depositional sub‐tidal environment of straits and embayments and the shortest‐term tidal cycles.  相似文献   
7.
Cross-wavelet transform (XWT) is proposed as a data analysis technique for geological time-series. XWT permits the detection of cross-magnitude, phase differences (= lag time), nonstationarity, and coherency between signals from different paleoclimate records that may exhibit large stratigraphic uncertainties and noise levels. The approach presented herein utilizes a continuous XWT technique with Morlet wavelet as the mother function, allows for variable scaling factors for time and scale sampling, and the automatic extraction of the most significant periodic signals. XWT and cross-spectral analysis is applied on computer generated time-series as well as two independently sampled proxy records (CO2 content approximated from plant cuticles and paleotemperature derived from δ 18O from marine fossil carbonate) of the last 290 Ma. The influence of nonstationarities in the paleoclimate records that are introduced by stratigraphic uncertainties were a particular focus of this study. The XWT outputs of the computer-models indicate that a potential causal relationship can be distorted if different geological time-scale and/or large stratigraphic uncertainties have been used. XWT detect strong cross-amplitudes (∼200 ppm ‰) between the CO2 and δ 18O record in the 20–50 Myr waveband, however, fluctuating phase differences prevent a statistical conclusion on causal relationship at this waveband.  相似文献   
8.
Studies of Quaternary extensional faults indicate that they have instantaneous amounts of throw (0·4 to 4 m), average slip rates (0·05 to 2·8 m kyr−1) and frequency of recurrence (<40 000 years) accounting for the accommodation space required for the accumulation of peritidal carbonate parasequences (PCPs). Hangingwall sites and graben are characterized by fault down-dropping together with regional subsidence, and footwall sites and horsts by fault-related uplift alternating with periods of regional subsidence. The relative sea-level curves generated by these processes operating in a maritime rift setting are used as inputs to a forward stratigraphic modelling program SedTec2000 to simulate how fault-related changes in accommodation space can account for high-frequency PCP formation. Each instantaneous fault slip generates a flooding surface or aggradation in hangingwall and graben settings. High-frequency cycles in hangingwall sites are either symmetric (deepening then shallowing upward) or asymmetric (shallowing-upward). The major factor controlling cycle types is the balance between rates of carbonate accumulation and generation of accomodation space. High-frequency cycles in footwall sites and horsts comprise shallow subtidal facies, with no distinctive bathymetric trends, capped by erosional boundaries generated by footwall uplift. The modelled cycles are of the same thickness, with bathymetric trends and frequency to cycles commonly interpreted to be due to orbitally driven eustatic sea-level changes or autocyclic processes. These numerical experiments demonstrate that high-frequency PCPs can be generated by tectonic, fault-related processes, a hypothesis that is frequently discounted.  相似文献   
9.
The study of many slope channel systems has led to the development of rules in the form of observations, measurements, and hypotheses. For example, we hypothesize that high abandonment relief can strongly influence the location of the subsequent channel element and will result in an organized channel stacking pattern in which the path of the younger channel element approximates the path of the former element. The rules were developed with the objective of constructing forward models of petroleum reservoirs that are internally consistent, reproducible, and quantifiable. Channelized turbidite deposits can be interpreted to be the product of multiple cycles of waxing-waning flow energy at multiple scales. Systematic changes in the volume and caliber of turbidity flows through time trigger a fall of the equilibrium profile, which drives erosion and sediment bypass across the slope, followed by a rise of the equilibrium profile, which allows deposition on the slope of increasingly mud-rich sediments through time. In most turbidite successions, at least three scales of waxing-waning cyclicity can be interpreted: element, complex set, and sequence. The stacking pattern of channel elements within a complex set-scale cycle tends to be sequential: (1) erosion and sediment bypass; (2) amalgamation of channel elements associated with a low rate of aggradation; (3) a disorganized stacking pattern of channel elements associated with a moderate rate of aggradation; and (4) an organized stacking pattern of channel elements associated with a high rate of aggradation. Stages 1 and 2 may be absent or minor in mud-rich systems but prominent in sand-rich systems. Conversely, stage 4 may be prominent in mud-rich systems but absent in sand-rich systems. Event-based forward modeling, utilizing rules, can produce realistic architectures, such as the four stages described above. Multiple realizations and multiple alternative models can be constructed to quantitatively examine the probability of specific parameters of interest such as pore volume and connectivity.  相似文献   
10.
Cyclic characters of Karharbari, Barakar and Barren Measures Formations of the Talchir Gondwana basin have been studied in the subsurface logs statistically using first order Markov chain and entropy analyses. Results strongly suggest that the sediments of these formations were deposited by Markovian mechanism and all the three formations represent cyclic sedimentation. The complete cycles of all the three formations are identical and exhibit fining-upward character. Each complete cycle starts with a thin conglomerate or pebbly to coarse-grained sandstone at the base and successively followed by medium- and fine-grained sandstones, interbedded sandstone-shale, shale and terminates with a coal seam at the top. There are, however, minor variations of facies transition in different formations. Entropy analysis also corroborates these findings. The upward sequence of facies states, which is stationary at individual localities, is non-stationary over the entire area. Broad regional variations in the depositional environment, that are not significant at the local scale, may be the plausible explanation. The Karharbari, Barakar and Barren Measures sediments of the Talchir Gondwana basin fit suitably into the concept of fluvial cycles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号