首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
  国内免费   1篇
地球物理   2篇
地质学   10篇
海洋学   1篇
自然地理   2篇
  2022年   1篇
  2017年   1篇
  2014年   1篇
  2012年   3篇
  2008年   2篇
  2004年   2篇
  2002年   3篇
  1999年   1篇
  1996年   1篇
排序方式: 共有15条查询结果,搜索用时 31 毫秒
1.
The buried Chicxulub impact structure is marked by a dramatic ring of sinkholes (called cenotes if containing water), and adjacent less prominent partial rings, which have been shown to coincide with maxima in horizontal gravity gradients and a topographic depression. These observations, along with the discreteness and spacing of the features, suggest a formation mechanism involving faulting in the outer slump zone of the crater, which would thus have a diameter of approximately 180 km.
An opposing view, based primarily on the interpretation of gravity data, is that (he crater is much larger than the cenote ring implies. Given the association of the known cenote ring with faults, we here examine northern Yucatan for similar rings in gravity, surface features and elevation, which we might expect to be associated with outer concentric faults in the case of a larger, possibly multiring, structure.
No such outer rings have been found, although definite patterns are seen in the distribution of karst features outside the crater rim. We explain these patterns as resulting mainly from deformation related to the block fault zone that parallels tbe shelf edge of eastern Yucatan.  相似文献   
2.
CSDP core Yaxcopoil-1 was drilled to a depth of 1,511 m within the Chicxulub crater. An organic-rich marly limestone near the base of the hole (1,495 to 1,452 m) was deposited in an open marine shelf environment during the latest Cenomanian (uppermost Rotalipora cushmani zone). The overlying sequence of limestones, dolomites and anhydrites (1,495 to 894 m) indicates deposition in various carbonate platform environments (e.g., sabkhas, lagoons). A 100-m-thick suevite breccia (894–794 m) identifies the Chicxulub impact event. Above the suevite breccia is a dolomitic limestone with planktic foraminiferal assemblages indicative of Plummerita hantkeninoides zone CF1, which spans the last 300 ky of the Maastrichtian. An erosional surface 50 cm above the breccia/dolomite contact marks the K/T boundary and a hiatus. Limestones above this contact contain the first Tertiary planktic foraminifera indicative of an upper P. eugubina zone P1a(2) age. Another hiatus 7 cm upsection separates zone P1a(2) and hemipelagic limestones of planktic foraminiferal Zone P1c. Planktic foraminiferal assemblages of Zone Plc to P3b age are present from a depth of 794.04 up to 775 m. The Cretaceous carbonate sequence appears to be autochthonous, with a stratigraphic sequence comparable to late Cretaceous sediments known from outside the Chicxulub crater in northern and southern Yucatan, including the late Cenomanian organic-rich marly limestone. There is no evidence that these sediments represent crater infill due to megablocks sliding into the crater, such as major disruption of sediments, chaotic changes in lithology, overturned or deep dipping megablocks, major mechanical fragmentation, shock or thermal alteration, or ductile deformation. Breccia units that are intercalated in the carbonate platform sequence are intraformational in origin (e.g., dissolution of evaporites) and dykes are rare. Major disturbances of strata by the impact therefore appear to have been confined to within less than 60 km from the proposed impact center. Yaxcopoil-1 may be located outside the collapsed transient crater cavity, either on the upper end of an elevated and tilted horst of the terrace zone, or even outside the annular crater cavity. The Chicxulub site thus records a large impact that predates the K/T boundary impact and mass extinction.  相似文献   
3.
The depositional and diagenetic history of Cretaceous–Tertiary (KT) impact ejecta deposited 360 km from the Chicxulub crater, at Albion Island, Belize, has been investigated using integrated cathodoluminescence and isotopic analyses. A quarry exposes 26 m of Upper Cretaceous Barton Creek Formation dolomitized marine limestone overlain by 16 m of dolomitized Albion Formation impact ejecta. The Albion Formation consists of a lower fine‐grained ≈1‐m‐thick spheroid bed and an upper 15‐m‐thick coarse conglomeratic diamictite bed. A 14‐event paragenetic sequence has been documented and used as a temporal framework to interpret chemostratigraphic trends in bulk rock δ18O, δ13C and 87Sr/86Sr. The uppermost surface of the Barton Creek Formation was subaerially exposed before the KT impact, as indicated by a brecciated palaeosol that caps upsection decreases in δ13C and δ18O. Small 1‐cm‐diameter spheroids in the spheroid bed exhibit vermicular crystalline textures but lack the concentric zonations common to accretionary lapilli. These spheroids are hypothesized originally to have been impact glass or reactive Ca and Mg oxide dusts that adhered to water vapour particles condensing from the cooling impact vapour cloud. The spheroids were dolomitized soon after deposition. The earliest dolomitization in the matrix sediments of the Albion Formation was also post‐depositional, replacing clays formed by devitrification of impact glass. Dolomite and clay 87Sr/86Sr exhibit a distinct symmetrical distribution in the spheroid bed ranging from 0·707745 to 0·707872. Although unproven, this may represent primary changes in the chemical composition of the impact glass. The limestone clasts in the diamictite bed were dolomitized before the KT impact and exhibit upsection decreases in bulk rock 87Sr/86Sr. This suggests that the clasts were excavated from strata equivalent in age or older than the Barton Creek Formation at locations closer to, or in, the Chicxulub crater.  相似文献   
4.
An integrated offshore/onshore reflection and refraction experiment was shot across the Chicxulub impact crater in 1996. The refraction data were previously inverted in 3D using first-arrival travel-time tomography. A regularized inversion, in which both data misfit and model roughness are minimized simultaneously, was used to determine a smooth velocity tomogram across the inner crater region. However, the experimental geometry for the refraction data was irregular, causing concern that this velocity model might not be well resolved. In this paper, we present a suite of checkerboard tests to investigate the lateral resolution of our velocity model. The Chicxulub crater is located partly onshore and partly offshore, with its centre close to the Yucatan coastline in Mexico. The shallow water limited acquisition of marine reflection data to distances of not closer than 25 km from the crater centre, and the centre of the structure is imaged with refraction data only. Intriguing velocity anomalies were observed across the central crater region, providing constraints on the lithological and structural form of Chicxulub. A high-velocity body within the central crater is most likely to represent lower-crustal rocks that were stratigraphically uplifted during the formation of this complex crater. The concave shape of this stratigraphic uplift suggests clues to the mechanics of large-crater collapse—the rocks appear to have moved upward and outward. An inward-dipping zone of lowered velocity has been interpreted as delimiting the outer edge of a central zone of melt-rich rocks. The resolution tests presented here indicate that these observed velocity anomalies are likely to be real.  相似文献   
5.
《International Geology Review》2012,54(12):1079-1102
In the past few years, meteoritic and cometary impacts have emerged as a major geological agent in the construction and evolution of planetary surfaces. Formation of complex central ring, peak ring and multiring craters involves excavation and melting of large volumes of crustal material. High-resolution geophysical mapping measuring gravity, magnetics, and topography of the Moon and Mars have recently provided information on the subsurface structure of large basins and aided in identifying buried giant craters. The terrestrial crater record has been significantly erased by tectonic, magmatic, and erosion processes and only a small proportion of impact structures remain. Record of multiring craters is limited to three examples: Vredefort, Sudbury and Chicxulub. Deep geophysical surveys and geochemical and isotopic studies of those craters provide means to evaluate the influence of large impacts on the lithospheric and crustal evolution by providing estimates of excavation depth and volume, amounts of material fragmented, ejected, vaporized and melted, and effects on the crustal stratigraphy and crustal thickness. Analyses on the melt from Vredefort, Sudbury, and Chicxulub indicate andesitic composition derived from lower-crustal material. The melt formed inside the lower transient cavity from lower crustal material that was then redistributed and emplaced in upper-crustal levels, resulting in crustal redistribution. Crystalline basement clasts fragmented and incorporated into the breccias show varying degrees of alteration but no significant thermal effects. Ejecta were deposited locally within the crater region and ballistic material and fine ejecta are globally distributed on the planetary surface. Impacts influence the crust–mantle boundary, with Moho uplift. Material from the mantle was not incorporated into the melt and impact breccias, indicating that the excavation cavities were confined to the lower crust. This is also apparently the case for the giant basins on the Moon, including the 2500 km diameter South Pole-Aitken Basin. Considering the numbers of large multiring basins, possible flux of large impacts, and effects on target surfaces, crustal scale redistribution of material during those large impacts has played a major role in the evolution of planetary surfaces.  相似文献   
6.
The La Popa Basin in north‐eastern Mexico features outstanding, continuous three‐dimensional exposures of the Cretaceous–Palaeogene boundary event deposit in shallow shelf environments pierced by salt stocks. In the area to the south‐east of the El Papalote diapir, the Cretaceous–Palaeogene deposit consists of two superimposed sedimentary units and erosively overlies upper Maastrichtian sand‐siltstones with soft‐sediment deformation and liquefaction structures. The basal unit 1 is an up to 8 m thick chaotic, carbonate‐rich bed that discontinuously fills incised gutters and channels. Besides abundant silicic and carbonate ejecta spherules from the Chicxulub impact, unit 1 includes large sandstone boulders and abundant shallow‐water debris (for example, mud clasts, algae, bivalve shells, gastropod shells and vertebrate remains). Unit 1 is conformably overlain by unit 2. Distal to the diapir, unit 2 consists of a centimetre to decimetre‐thick conglomeratic, coarse bioclast and spherule‐bearing sandstone bed. Closer to the diapir, unit 2 becomes a metre‐thick series of four to eight conglomeratic to fine‐grained graded sandstone beds rich in shell debris and ejecta spherules. Unit 2 is conformably overlain by structureless to parallel laminated sandstone beds that may mark the return to the pre‐event depositional regime. The sedimentary characteristics of the Cretaceous–Palaeogene deposit, including its erosive base, its sheet‐like geometry, the presence of multiple, graded beds, evidence for upper flow regime conditions and the absence of bioturbation, support an origin by a short‐term multiphase depositional event. The occurrence of soft‐sediment deformation structures (for example, liquefaction) below the Cretaceous–Palaeogene deposit suggests that earthquakes were the first to occur at La Popa. Then, shelf collapse and strong backflow from the first tsunami waves may have triggered erosion and deposition by violent ejecta‐rich hyperconcentrated density flows (unit 1). Subsequently, a series of concentrated density flows resulting from tsunami backwash surges may have deposited the multiple‐graded bedding structures of unit 2. The specific depositional sequence and the Fe‐Mg‐rich as well as Si‐K‐rich composition of the ejecta spherules both provide a critical link to the well‐known deep marine Cretaceous–Palaeogene boundary sites in the adjacent Burgos basin in north‐eastern Mexico. Moreover, the pulse‐like input of Chicxulub ejecta material at the base of the event deposit allows for correlation with other Cretaceous–Palaeogene boundary sites in the Gulf of Mexico and the Atlantic, as well as in Central and Northern America. The presence of diverse dinosaur and mosasur bones and teeth in the event deposit is the first observation of such remains together with Chicxulub ejecta material. These findings indicate that dinosaurs lived in the area during the latest Maastrichtian and suggest that the tsunami waves not only eroded deltas and estuaries but the coastal plain as well.  相似文献   
7.
Impact ejecta from the Albion Formation are exposed in northern Belize. The ejecta come from the outer portion of the continuous ejecta blanket of the Chicxulub crater, which is located 360 km to the northwest. The basal unit of the Albion Formation is a 1-m-thick clay and dolomite spheroid bed composed of up to four discrete flows. The clay spheroids are altered impact glass, and the dolomite spheroids are accretionary lapilli. The upper unit is a 15-m-thick coarse diamictite bed containing altered glass, large accretionary blocks, striated, polished, and impacted cobbles, and rare shocked quartz. The abundance of accretionary clasts, evidence for atmospheric drag sorting, and the presence of multiple flows in the Albion Formation indicate that atmospheres play an important role in the formation of the outer portions of continuous ejecta blankets of large craters.  相似文献   
8.
This work presents isotopic data for the non-traditional isotope systems Fe, Cu, and Zn on a set of Chicxulub impactites and target lithologies with the aim of better documenting the dynamic processes taking place during hypervelocity impact events, as well as those affecting impact structures during the post-impact phase. The focus lies on material from the recent IODP-ICDP Expedition 364 Hole M0077A drill core obtained from the offshore Chicxulub peak ring. Two ejecta blanket samples from the UNAM 5 and 7 cores were used to compare the crater lithologies with those outside of the impact structure. The datasets of bulk Fe, Cu, and Zn isotope ratios are coupled with petrographic observations and bulk major and trace element compositions to disentangle equilibrium isotope fractionation effects from kinetic processes. The observed Fe and Cu isotopic signatures, with δ56/54Fe ranging from ?0.95‰ to 0.58‰ and δ65/63Cu from ?0.73‰ to 0.14‰, mostly reflect felsic, mafic, and carbonate target lithology mixing and secondary sulfide mineral formation, the latter associated to the extensive and long-lived (>105 years) hydrothermal system within Chicxulub structure. On the other hand, the stable Zn isotope ratios provide evidence for volatility-governed isotopic fractionation. The heavier Zn isotopic compositions observed for the uppermost part of the impactite sequence and a metamorphic clast (δ66/64Zn of up to 0.80‰ and 0.87‰, respectively) relative to most basement lithologies and impact melt rock units indicate partial vaporization of Zn, comparable to what has been observed for Cretaceous-Paleogene boundary layer sediments around the world, as well as for tektites from various strewn fields. In contrast to previous work, our data indicate that an isotopically light Zn reservoir (δ66/64Zn down to ?0.49‰), of which the existence has previously been suggested based on mass balance considerations, may reside within the upper impact melt rock (UIM) unit. This observation is restricted to a few UIM samples only and cannot be extended to other target or impact melt rock units. Light isotopic signatures of moderately volatile elements in tektites and microtektites have previously been linked to (back-)condensation under distinct kinetic regimes. Although some of the signatures observed may have been partially overprinted during post-impact processes, our bulk data confirm impact volatilization and condensation of Zn, which may be even more pronounced at the microscale, with variable degrees of mixing between isotopically distinct reservoirs, not only at proximal to distal ejecta sites, but also within the lithologies associated with the Chicxulub impact crater.  相似文献   
9.
A series of natural silica impactite samples from Chicxulub (Mexico) was investigated by Raman microprobe (RMP) analysis. The data yield evidence for high-pressure shock metamorphism in the rock. The impactite contains three polymorphs of silica: the original α-quartz, and two high-pressure varieties – coesite and disordered quartz representing various degrees of crystallinity. We found systematic changes in frequencies and half-widths of the Raman bands, caused by increasing irregularities of bond-lengths and bond-angles and a general breaking-up of the structure as a result of impact events. Therefore, RMP is an adequate tool for measuring the crystallinity of disordered quartz. The half-width Γ and the frequency ω of the symmetric SiOSi stretching vibrational band (A1 mode) of the SiO4 tetrahedra are the most amenable parameters for estimating the degree of crystallinity. In well-crystallized quartz, Γ=5 cm?1 and ω=464 cm?1, while in highly disordered quartz this line shifts up to ω=455 cm?1 and broadens up to Γ=30 cm?1. The Raman lineshapes appear to depend strongly on the degree of lattice disorder subsequent to impact events. To cite this article: M. Ostroumov et al., C. R. Geoscience 334 (2002) 21–26  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号