首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  国内免费   1篇
地质学   2篇
海洋学   2篇
  2016年   1篇
  2013年   1篇
  2004年   1篇
  1999年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
从松节藻中分离的含卤素化合物表现出显著PTP1B抑制活性。其中BPN效果最佳。为研究BPN侧链基团极性对其抑制活性的影响,本文以香兰素(1)为起始原料,经过溴代、氧化、还原、傅克烷基化以及酯化等反应,成功合成了新化合物2,3-二溴-1-(2-溴-3,4-二甲氧基-6-((4-硝基苯氧基)甲基)苯甲基)-4,5-二甲氧基苯(10)、4-((3-溴-2-(2,3-二溴-4,5-二甲氧基苄基)-4,5-二甲氧基苄基)醚)苯胺(11)、4-((3-溴-2-(2,3-二溴-4,5-二甲氧基苄基)-4,5-二甲氧基苄基)醚)-4-乙酰乙酸(12)和3-溴-2-(2,3-二溴-4,5-二甲氧基苄基)-4,5-二甲氧基苯甲醛肟(14)。通过1 H-NMR,13C-NMR等方法对目标产物进行了结构表征。并对化合物进行了PTP1B酶抑制活性的测定,结果表明化合物侧链极性对PTP1B酶抑制活性有显著影响。  相似文献   
2.
Two mud volcano fields were explored during the French–Dutch MEDINAUT cruise (1998) with the submersible NAUTILE, one south of Crete along the Mediteranean Ridge at about 2000 m depth (Olimpi mud field) and the other south of Turkey between 1700 and 2000 m depth (Anaximander mud field) where high methane concentrations were measured. Chemosynthetic communities were observed and sampled on six mud volcanoes and along a fault scarp. The communities were dominated by bivalves of particularly small size, belonging to families commonly found at seeps (Mytilidae, Vesicomyidae, Thyasiridae) and to Lucinidae mostly encountered in littoral sulfide-rich sediments and at the shallowest seeps. Siboglinid polychaetes including a large vestimentiferan Lamellibrachia sp. were also associated. At least four bivalve species and one siboglinid are associated with symbiotic chemoautotrophic bacteria, as evidenced by Transmission Electronic Microscopy and isotopic ratio measurements. Among the bivalves, a mytilid harbors both methanotrophic and sulfide-oxidizing bacteria. Video spatial analysis of the community distribution on three volcanoes shows that dense bivalve shell accumulations (mainly lucinids) spread over large areas, from 10% to 38% of the explored areas (2500–15000 m2) on the different volcanoes. Lamellibrachia sp. had different spatial distribution and variable density in the two mud volcano fields, apparently related with higher methane fluxes in the Anaximander volcanoes and maybe with the instability due to brines in the Olimpi area. The abundance and richness of the observed chemosynthetic fauna and the size of some of the species contrast with the poverty of the deep eastern Mediterranean. The presence of a specialized fauna, with some mollusk genera and species shared with other reduced environments of the Mediterranean, but not dominated by the large bivalves usually found at seeps, is discussed.  相似文献   
3.
海洋无脊椎动物和细菌间的化能合成共生作用的发现,改变了人们对深海热液口初级生产力主要来源的认知.近年的研究表明,营化能合成共生的动物隶属于纤毛门、软体动物门、环节动物门和节肢动物门;其中无脊椎动物作为宿主在与共生菌的长期共生过程中,伴随着部分器官和功能的退化或消失,逐渐形成和演化出了与此相适应的形态结构,并产生了一些特殊的行为;在深海热液口发现的所有化能合成共生菌都属于革兰氏阴性菌,它们的宿主大致可以分为2个群体;通过16 SrRNA基因编码分析,不同代谢类型的共生菌在系统发育中通常处于不同分支,形态也有所差异;共生菌独特的传播方式和进化模式也使其更加适应共生生活;由无脊椎动物和化能合成细菌构成的共生体系与环境相互作用,影响了深海热液口生态系统的演化.对共生菌蛋白质及代谢组学的研究,以及对宿主生理和代谢机制的研究将成为未来热液口化能合成共生作用研究的新热点.  相似文献   
4.
 Cold-seep communities have relatively low diversity, are dominated by one or two taxa present in high density and high biomass in comparison with the surrounding fauna, and are restricted to aphotic habitats. Their associated heterotrophic fauna are usually distinctive from the fauna of their surroundings. In contrast, a more commonplace chemoautotrophically based community occurs in shallow photic habitats. The associated heterotrophic fauna includes many of the species typical of the surrounding communities and typically dominates abundance, whereas the species with chemoautotrophic symbionts dominate biomass. All modern seep assemblages are deeper than 550 m. Many fossil seep assemblages occurred in water as shallow as the mid-shelf (<200 m). In contrast, communities where species with chemoautotrophic symbionts are biomass dominants, but not numerical dominants, are common in shallow waters at present but rarely reported in the geological record. We suggest that the absence of cold-seep communities on the continental shelf presently is due to a combination of predation and competitive exclusion by primary consumers limiting the presence of species dependent on chemoautotrophic symbionts. We suggest that cold-seep assemblages are more common at shelf depths in the fossil record for two reasons: (a) The biases of preservation have accentuated their distribution by transforming communities where species with chemoautotrophic symbionts dominate by biomass, but not numerically, into cold-seep-appearing assemblages. (b) The importance of predation pressure and oligotrophy has varied, with decreased predation pressure accompanying increased oligotrophy favoring cold-seep communities. We suggest that the paucity of shallow-water assemblages with species harboring chemoautotrophic symbionts as biomass dominants in the fossil record is based on the reliance of paleoecological analysis on numerical abundance data when energy flow analyses are required to identify these assemblages. The distinctiveness of the fossil seep assemblage is intensified by taphonomic processes that bias the assemblage against small individuals and epifaunal species, so that diversity declines, the small heterotrophic component of the assemblage is significantly reduced, and the epifaunal component is minimized. The final assemblage is usually dominated by the better-preserved large infaunal clams which perchance are also the species with chemoautotrophic symbionts. In contrast, preservation does not enhance the distinctiveness of these chemoautotroph-harboring species in shallow water. Received: 16 April 1998 / Accepted: 29 June 1999  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号