首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   150篇
  免费   37篇
  国内免费   78篇
地球物理   8篇
地质学   242篇
海洋学   2篇
天文学   1篇
综合类   6篇
自然地理   6篇
  2023年   1篇
  2022年   4篇
  2021年   7篇
  2020年   6篇
  2019年   6篇
  2018年   7篇
  2017年   5篇
  2016年   6篇
  2015年   8篇
  2014年   11篇
  2013年   9篇
  2012年   14篇
  2011年   14篇
  2010年   12篇
  2009年   11篇
  2008年   8篇
  2007年   9篇
  2006年   18篇
  2005年   8篇
  2004年   7篇
  2003年   11篇
  2002年   8篇
  2001年   6篇
  2000年   15篇
  1999年   8篇
  1998年   11篇
  1997年   6篇
  1996年   5篇
  1995年   6篇
  1994年   7篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1984年   2篇
排序方式: 共有265条查询结果,搜索用时 296 毫秒
1.
The Scandinavian Caledonides have been viewed as resulting from either a single Silurian (i.e. Scandian) event or from polycyclic orogenies involving several collisions on the margin of Baltica. Early studies of the Kalak Nappe Complex (KNC) in Finnmark, Arctic Norway, led to the hypothesis of an Early Cambrian-Early Ordovician (520-480 Ma) Finnmarkian Orogeny, though the nature of this tectonic event remains enigmatic. In this contribution we have employed in situ UV laser ablation Ar-Ar dating of fine-grained phyllite and schist from the eastern Caledonides of Arctic Norway to investigate the presence of pre-Scandian tectonometamorphic events. U-Th-Pb detrital zircon and whole rock Sm-Nd analyses have been used to test the regional stratigraphic correlations of these metasedimentary rocks. These results indicate that the Berlevåg Formation within the Tanafjord Nappe, previously assumed to be part of the KNC, was deposited after 1872 Ma and prior to a low temperature hydrothermal event at 555 ± 15 Ma. It has a likely provenance on the Baltica continent, lacks any Grenville-Sveconorwegian detrital zircons, and thus cannot be part of the KNC which contains abundant detritus in this age range. Instead the Berlevåg Formation is interpreted as part of the Laksefjord Nappe Complex, which structurally underlies the KNC. Laser-ablation argon-argon dating also shows that late Caledonian (i.e. Scandian) tectonometamorphism affected both the KNC and its immediate footwall at c. 425 ± 15 Ma. This is corroborated by a step-heating argon-argon muscovite age of 424 ± 3 Ma which is interpreted as dating cooling. However, within two samples from the KNC, an earlier (Middle-Late Cambrian) metamorphic event is also recorded. A biotite-grade schist yielded an Ar-Ar inverse isochron age of 506 ± 17 Ma from whole rock surfaces, in which the mineral domains are too fine-grained to date individually. An early generation of muscovite from a coarser-grained amphibolite-facies sample yielded an inverse isochron of 498 ± 13 Ma. Both isochron ages have atmospheric argon intercept values. Previous studies have documented similar Cambrian ages in the Caledonian nappes below the KNC. These results suggest correlative tectonometamorphic events in the eastern KNC and its footwall at c. 500 Ma. This Cambrian event may reflect the arrival of the Kalak Nappe Complex as a previously constructed exotic mobile belt onto the margin of Baltica. Combined with recent studies from the western Kalak Nappe Complex, the results do not support the traditional constraint on the Finnmarkian Orogeny sensu stricto. However they vindicate classic tectonic models involving a Cambrian accretion event.  相似文献   
2.
塔里木西部地区古生代断裂活动的方式和机制   总被引:15,自引:2,他引:13       下载免费PDF全文
基于系统的地震剖面解释及其与塔中地区的对比,本文探讨了塔里木西部地区古生代断裂活动的方式和机制。玛东断裂带是一条宽阔的北东向盖层滑脱型褶皱冲断带,前展式向东南扩展,冲断作用发生在奥陶纪末。巴东断裂(吐土休克Ⅱ号断裂)为北西向基底卷入型冲断带,奥陶纪末和中二叠世末发生冲断。巴西断裂和塔参2井南断裂是海西期的正断层。塔里木古板块古生代的发育受邻侧的造山带演化制约,近东西向和北东向断裂奥陶纪末的冲断是继承基底构造发育的。塔中地区的近北西向断裂是晚寒武世的新生断裂,加里东运动可分为两幕:奥陶纪末的冲断(艾比湖运动)和晚志留-中泥盆世的冲断-走滑,后者向西明显减弱。塔里木西部的部分北西向断裂(如康西断裂)可归入塔中北西向断裂系。北东向的玛东断裂带是其西的向北(东)冲断的吐木休克断裂带与其东的向南偏东冲断的塔中8-1井——塔中5井断裂带之间的调节断层。  相似文献   
3.
4.
华夏地块: 一个由古老物质组成的年轻陆块   总被引:26,自引:3,他引:26  
对华夏地块三个主要前寒武纪地质体出露区变质岩的详细锆石年代学的综合分析显示,华夏地块大致可以被分成武夷山区和南岭-云开区。武夷山区由古元古代核和新元古代(形成于730-820 Ma)的盖层组成,构成华夏地块最老的古陆,在其深部很可能还存在一个新太古代基底。新元古代的沉积物主要来自武夷微古陆本身。南岭与云开具有相似的前寒武纪地壳组成,它们主要是由新元古代形成的沉积物夹少量火山岩组成。这些沉积物质中包含了非常古老的中太古代和新太古代组分,甚至古太古代组成。Grenville期和中元古代组分是其中最丰富的。这些组分在华夏没有对应出露的岩石,说明它们主要来自另外一个曾经与华夏相邻的陆块。该陆块很可能是东印度-东南极大陆。南岭-云开区最初可能是Rodinia超大陆裂解时形成的一个裂谷盆地,加里东的造山运动使盆地中的沉积物挤压、褶皱和隆起,与武夷陆块共同构成了一个新的年轻的大陆  相似文献   
5.
M. P. Atherton  A. A. Ghani 《Lithos》2002,62(3-4):65-85
None of the existing models for calc-alkaline “Late Granite” (Siluro–Devonian) genesis in the metamorphic Caledonian orogenic belt of Ireland and Scotland fully explains their spatial, age or chemical character. A consistent model must involve the closure of Iapetus Ocean, where slab breakoff is a natural consequence of attempted subduction of continental crust. Expected outcome is a long linear belt of high-K, calc-alkaline magmas, some with characteristic trace element signatures, specifically high Ba, Sr and Zr. Other features include the critical magmatic association of coeval appinite and granite, rapid uplift, erosion and the low-grade regional metamorphism in the Southern Uplands. The linear heat pulse on breakoff is spatially, intensity and time limited producing small volume melts emplaced as separated plutons, over a short time span. Magmatism in the Caledonian metamorphic belt is accurately accounted for by slab breakoff on collision of Baltica with the Scoto–Greenland margin during the Scandian orogeny, following Iapetus Ocean closure. The two chemically, isotopically and areally distinctive suites in the metamorphic belt in Scotland, viz. the Argyll and Cairngorm Suites, can be modelled by reference to the Donegal granites where sequential partial melting of new, lamprophyric underplated crust, then shallower old crust, as heat conduction moved up through the crust on slab breakoff, produced magmas characteristic of the two suites.  相似文献   
6.
The West Kunlun orogenic belt is located at the conjunction of the paleo-Asian tectonic system and the Tethys tectonic system. Petrological and mineralogical studies of the Early Cambrian metamorphic surface crust in this region have shown that in case the metamorphism reached low-temperature granulate facies, the typical mineral assemblage is biotite-garnet-silimanite-K feldspar-plagioclase-quartz. The peak metamorphic temperatures are within the range of 720–740°C and the pressure is 0.6 GPa ±. Three types of metamorphic zircon have been detected in the metamorphic rocks: the complex inclusion-bearing type ; the early relic zircon inclusion-bearing type; and the inclusion-free type. SHRIMP age determination of these three types of metamorphic zircon have revealed that these zircons were formed principally during 400–460 Ma, indicating that pre-Cambrian metamorphic surface crust rocks underwent low-temperature granulite facies metamorphism during the Caledonian. In combination with the geological characteristics of this region, it is considered that when the oceanic basin was closed, there occurred intense intracontinental subduction (type A), bringing part of the Early Cambrian metamorphic basement in this region downwards to the lower crust. Meanwhile, there were accompanied with tectonic deformation at deep levels and medium- to high-grade metamorphism. This study provided important chronological and mineralogical evidence for the exploration of the evolutionary mechanism and process of the West Kunlun Early Paleozoic. Part of the results from the research project “ Research on the West Kunlun pre-Cambrian tectonic events” under the program “ Research on the important geological problems of China’ s pre-Cambrian” (No. 200113900070) sponsored by the China National Geological Surveying Bureau.  相似文献   
7.
Abstract. The Ta'ergou tungsten deposit in Gansu province, northwestern China, is located in the western part of the North Qilian Caledonian orogen, and consists of scheelite skarn bodies and wolframite quartz veins. The tungsten‐bearing skarn developed by the replacement of carbonate layers intercalated in the Precambrian schist and amphibolite whereas wolframite‐quartz ore veins developed along a group of fractures that cut through horizontal skarns. The Ta'ergou tungsten deposit is genetically related to the Caledonian Yeniutan granodiorite intrusion and occurs ca. 500 m wide in the exo‐contact zone 300 ~ 500 m apart from the intrusion. The granodiorite displays a lower grade of differentiation, low content of SiO2 and high contents of mafic components. There are three types of fluid inclusions in the wolframite‐quartz vein systems, i. e. aqueous, CO2‐H2O and CO2‐rich. The homogenization temperature of aqueous inclusion ranges from 140 to 380d?C and their salinities from 6.4 to 17.4 equivalent wt% NaCl. Laser Raman spectroscopy shows that the inclusions contain a relatively high content of CO2. The δ34S values of skarn type sulfides range from +8.1 to +12.7 per mil and those of quartz vein sulfides from +9.3 to +14.9 per mil, similar to sulfides of the granodiorite with from +6.0 to +11.7 per mil. The δ18O values of quartz are between +10.5 and +13.3 per mil and those of wolframite between +3.4 and +5.1 per mil. The δ18O water values of ore forming fluids range from +0.6 to +6.4 per mil and suggest the mixture of magmatic fluids with meteoric water formed the ore‐forming fluids. It has been proved that Precambrian strata in the west sector of North Qilian region are enriched in tungsten. We propose the strata were remelted to be tungsten‐granitoid during subduction. The polymetallic tungsten was gradually accumulated into the roof pendants of the granite intrusion by fractional crystallization and then was deposited by hydrothermal fluids during metasomatism and infilling along fractures. On the other hand, the granite intrusion also acted as “heating machine” to make hydrothermal fluids leach out the metals from Precambrian strata and these metals joined the ore‐forming hydrothermal system.  相似文献   
8.
T. M. Boundy  K. Mezger  E. J. Essene   《Lithos》1997,39(3-4):159-178
The U-Pb and Sm-Nd dating of deep crustal rocks from the Bergen Arcs system helps resolve enigmatic aspects of the tectonic evolution of the Caledonian Orogen in western Norway and yields insights into the arrested stages of eclogite development within the granulites of the area. The U-Pb dating of zircon from one of the eclogite facies shear zones yields an upper intercept age of 945 ± 5 Ma [all errors two standard deviations (2σ)], which is similar to other zircon ages from the granulite facies protolith. The age is interpreted to represent the time of late Proterozoic (Sveconorwegian) granulite metamorphism. The U-Pb ages of sphene and epidote show that the eclogites formed early in the evolution of the Caledonian Orogen (pre-Scandian phase) at about 460 Ma. An eclogite facies quartz vein yields a Sm-Nd whole rock-garnet isochron of 440 ± 12 Ma that may reflect the onset of cooling immediately after peak eclogite facies conditions, although the Sm-Nd systematics reveal some isotopic disequilibrium within the sample. In tandem with previous 40Ar/39Ar age determinations from, an adjacent eclogite of 450 Ma for hornblende and 430 Ma for muscovite, these data indicate that < 30 Ma elapsed between formation of the eclogites and the initial stages of cooling and exhumation to at least mid-crustal levels. This corresponds to minimum cooling rates of 14 °C/m.y. The timing relations suggest that the formation and exhumation of these eclogites from the overlying Caledonian Nappe wedge in western Norway are related to an early phase of crustal subduction during or somewhat before the major phase of continent-continent collision.

The short period of time between the formation of the eclogites and the initial stages of exhumation and rapid cooling is consistent with the only partial and localized transformation of the granulite to eclogite. Isolated occurrences of eclogite within the granulite, the formation of eclogite along metasomatic fronts and the formation of hydrous eclogite facies minerals within the “dry” granulite all point to the importance of fluids in the transformation and re-equilibration of the granulite to eclogite. Together, field and isotopic data demonstrate that both the localized and limited access of fluids and the rapid cycling of continental crust through the deepest portions of the orogen to upper crustal levels resulted in the preservation of the arrested stages of eclogite formation and survival of the granulites metastably through eclogite facies conditions.  相似文献   

9.
以UP-Pb单颗粒锆石同位素稀释法、角闪石~(40)Ar—~(39)Ar坪年龄和Sm-Nd全岩及矿物等时线相结合的研究方法,系统地研究了大别造山带西部熊店榴辉岩的峰变质年龄,可能的原岩年龄和退变质年龄,建立了这一榴辉岩的构造-变质时间序列,提出了大别地区存在加里东期榴辉岩的确凿证据。  相似文献   
10.
西昆仑康西瓦加里东期孔兹岩系及地质意义   总被引:19,自引:1,他引:19  
在青藏高原西昆仑地体南部的元古宙片麻岩穹窿南侧 ,发育一条近 EW向规模巨大的康西瓦韧性走滑剪切带 ,韧性剪切带岩石由 7km宽的糜棱岩化的孔兹岩系组成 ,孔兹岩原岩为富铝质泥质沉积岩夹火山岩及大理岩。孔兹岩系的 MORB标准化微量元素蛛网图显示了其为富铝泥质沉积岩 ,具有明显的 Th正异常及 Ce、Zr等大离子的正异常 ,而变质火山岩中出现 Nb、Zr正异常 ;稀土元素含量展示上述两类岩石均具轻稀土相对富集、重稀土相对亏损及 Eu中度亏损的特性。康西瓦孔兹岩形成的温度为 70 0℃ ,压力 6 .8GPa。锆石 SHRIMP同位素年代测试表明 ,孔兹岩的碎屑锆石来源于 6 4 4~ 873Ma或更老的周缘古老变质基底剥蚀区 ,孔兹岩形成于加里东期(42 8~ 4 4 5 Ma) ,并遭受印支期 (2 5 0~ 2 10 Ma)强烈的剪切应变。康西瓦孔兹岩的原岩、微量元素与稀土元素特征、形成的温 -压条件以及生成时代等与南阿尔金孔兹岩系可以类比 ,表明西昆仑地体与阿尔金地体可能原为同一地体。中国已发现的孔兹岩系绝大部分为太古宙及元古宙的产物 ,西昆仑与阿尔金加里东期孔兹岩的发现不仅显示了加里东造山带山根的存在 ,而且提出沿阿尔金断裂系左行平移 6 0 0 km的新证据。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号