首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   0篇
地质学   49篇
  2020年   1篇
  2017年   1篇
  2014年   1篇
  2013年   22篇
  2008年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   6篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1985年   1篇
排序方式: 共有49条查询结果,搜索用时 15 毫秒
1.
Magmatism,metamorphism and metasomatism in the Palaeoproterozoic‐Mesoproterozoic Mt Painter Inlier and overlying Neoproterozoic Adelaidean rocks in the northern Flinders Ranges (South Australia) have previously been interpreted as resulting from the ca 500 Ma Delamerian Orogeny. New Rb–Sr, Sm–Nd and U–Pb data, as well as structural analysis,indicate that the area also experienced a second thermal event in the Late Ordovician (ca 440 Ma). The Delamerian Orogeny resulted in large‐scale folding, prograde metamorphism and minor magmatic activity in the form of a small volume of pegmatites and leucogranites. The Late Ordovician event produced larger volumes of granite (the British Empire Granite in the core of the inlier) and these show Nd isotopic evidence for a mantle component. The high‐temperature stage of this magmatic‐hydrothermal event also gave rise to unusual diopside‐titanite veins and the primary uranium mineralisation in the basement, of which the remobilisation was younger than 3.5 Ma. It is possible that parts of the Mt Gee quartz‐hematite epithermal system developed during the waning stages of the Late Ordovician event. We suggest that the Ordovician hydrothermal system was also the cause of the commonly observed retrogression of Delamerian metamorphic minerals (cordierite, andalusite) and the widespread development of actinolite, scapolite, tremolite and magnetite in the cover sequences. Deformation during the Late Ordovician was brittle. The recognition of the Late Ordovician magmatic‐hydrothermal event in the Mt Painter Province might help to link the tectonic evolution of central Australia and the southeast Australian Lachlan Fold Belt.  相似文献   
2.
The concentrations of trace elements in apatite from granitoid rocks of the Mt Isa Inlier have been investigated using the laser‐ablation inductively coupled plasma‐mass spectrometry (ICP‐MS) microprobe. The results indicate that the distribution of trace elements (especially rare‐earth elements (REE), Sr, Y, Mn and Th) in apatite strongly reflects the chemical characteristics of the parental rock. The variations in the trace‐element concentrations of apatite are correlated with parameters such as the SiO2 content, oxidation state of iron, total alkalis and the aluminium saturation index (ASI). The relative enrichment of Y, HREE and Mn and the relative depletion of Sr in the apatites studied reflect the degree of fractionation of the host granite. Apatites from strongly oxidised plutons tend to have higher concentrations of LREE relative to MREE. Manganese concentrations are higher in apatite from reduced granitoids because Mn2+substitutes directly for Ca2+. The La/Ce ratio of apatite is well‐correlated with the whole‐rock K2O and Na2O contents, as well as with the oxidation state and ASI. Because apatite trace‐element composition reflects the chemistry of the whole rock, it can be a useful indicator mineral for the recognition of mineralised granite suites, where particular mineralisation styles are associated with granitoids that have specific geochemical fingerprints.  相似文献   
3.
Fifty‐five new SHRIMP U–Pb zircon ages from samples of northern Australian ‘basement’ and its overlying Proterozoic successions are used to refine and, in places, significantly change previous lithostratigraphic correlations. In conjunction with sequence‐stratigraphic studies, the 1800–1580 Ma rock record between Mt Isa and the Roper River is now classified into three superbasin phases—the Leichhardt, Calvert and Isa. These three major depositional episodes are separated by ~20 million years gaps. The Isa Superbasin can be further subdivided into seven supersequences each 10–15 million years in duration. Gaps in the geological record between these supersequences are variable; they approach several million years in basin‐margin positions, but are much smaller in the depocentres. Arguments based on field setting, petrography, zircon morphology, and U–Pb systematics are used to interpret these U–Pb zircon ages and in most cases to demonstrate that the ages obtained are depositional. In some instances, zircon crystals are reworked and give maximum depositional ages. These give useful provenance information as they fingerprint the source(s) of basin fill. Six new ‘Barramundi’ basement ages (around 1850 Ma) were obtained from crystalline units in the Murphy Inlier (Nicholson Granite and Cliffdale Volcanics), the Urapunga Tectonic Ridge (‘Mt Reid Volcanics’ and ‘Urapunga Granite’), and the central McArthur Basin (Scrutton Volcanics). New ages were also obtained from units assigned to the Calvert Superbasin (ca 1740–1690 Ma). SHRIMP results show that the Wollogorang Formation is not one continuous unit, but two different sequences, one deposited around 1730 Ma and a younger unit deposited around 1722 Ma. Further documentation is given of a regional 1725 Ma felsic event adjacent to the Murphy Inlier (Peters Creek Volcanics and Packsaddle Microgranite) and in the Carrara Range. A younger ca 1710 Ma felsic event is indicated in the southwestern McArthur Basin (Tanumbirini Rhyolite and overlying Nyanantu Formation). Four of the seven supersequences in the Isa Superbasin (ca 1670–1580 Ma) are reasonably well‐constrained by the new SHRIMP results: the Gun Supersequence (ca 1670–1655 Ma) by Paradise Creek Formation, Moondarra Siltstone, Breakaway Shale and Urquhart Shale ages grouped between 1668 and 1652 Ma; the Loretta Supersequence (ca 1655–1645 Ma) by results from the Lady Loretta Formation, Walford Dolomite, the upper part of the Mallapunyah Formation and the Tatoola Sandstone between ca 1653 and 1647 Ma; the River Supersequence (ca 1645–1630 Ma) by ages from the Teena Dolomite, Mt Les and Riversleigh Siltstones, and Barney Creek, Lynott, St Vidgeon and Nagi Formations clustering around 1640 Ma; and the Term Supersequence (ca 1630–1615 Ma) by ages from the Stretton Sandstone, lower Doomadgee Formation and lower part of the Lawn Hill Formation, mostly around 1630–1620 Ma. The next two younger supersequences are less well‐constrained geochronologically, but comprise the Lawn Supersequence (ca 1615–1600 Ma) with ages from the lower Balbirini Dolomite, and lower Doomadgee, Amos and middle Lawn Hill Formations, clustered around 1615–1610 Ma; and the Wide Supersequence (ca 1600–1585 Ma) with only two ages around 1590 Ma, one from the upper Balbirini Dolomite and the other from the upper Lawn Hill Formation. The Doom Supersequence (<1585 Ma) at the top of the Isa Superbasin is essentially unconstrained. The integration of high‐precision SHRIMP dating from continuously analysed stratigraphic sections, within a sequence stratigraphic context, provides an enhanced chronostratigraphic framework leading to more reliable interpretations of basin architecture and evolution.  相似文献   
4.
The Arunta Inlier is a 200 000 km2 region of mainly Precambrian metamorphosed sedimentary and igneous rock in central Australia. To the N it merges with similar rocks of lower metamorphic grade in the Tennant Creek Inlier, and to the NW it merges with schist and gneiss of The Granites‐Tanami Province. It is characterized by mafic and felsic meta‐igneous rocks, abundant silicic and aluminous metasediments and carbonate, and low‐ to medium‐pressure metamorphism. Hence, the Arunta Inlier is interpreted as a Proterozoic ensialic mobile belt floored by continental crust. The belt evolved over about 1500 Ma, and began with mafic and felsic volcanism and mafic intrusion in a latitudinal rift, followed by shale and limestone deposition, deformation, metamorphism and emergence. Flysch sedimentation and volcanism then continued in geosynclinal troughs flanking the ridge of meta‐igneous rocks, and were followed by platform deposition of thin shallow‐marine sediments, further deformation, and episodes of metamorphism and granite intrusion.  相似文献   
5.
Small pods of silica-undersaturated Al-rich and Mg-rich granulite facies rocks containing sapphirine, pleonastic spinel, kornerupine, cordierite, orthopyroxene, corundum, sillimanite and gedrite are scattered throughout the NE Strangways Range, Central Australia. These are divided into four distinct rock types, namely orthopyroxene-rich aluminous granofels and metapelitic gneisses containing sapphirine, spinel or kornerupine. Two granulite facies metamorphic events are recognized, of which only the first (M1) is considered in this paper. Peak metamorphic mineral parageneses indicate that the M1 thermal maximum occurred at approximately 900–950 °C and 8–9 kbar. All samples are characterized by profuse and diverse coronitic and symplectic reaction textures. These are interpreted as evidence for the sequential crossing of the following reactions in the system FMAS: cordierite + spinel + corundum = sapphirine + sillimanite, cordierite + spinel = orthopyroxene + sapphirine + sillimanite, sapphirine + spinel + sillimanite = orthopyroxene + corundum, sapphirine + sillimanite = cordierite + orthopyroxene + corundum. Phase stability relationships in FMAS and MASH indicate an anticlockwise P–T path terminated by isobaric cooling. Such a path is exemplified by early low-P mineral parageneses containing spinel, corundum and gedrite and the occurrence of both prograde and retrograde corundum. Reaction textures preserve evidence for an increase in aH2O and aB2O3 with progressive isobaric cooling. This hydrous retrogression resulted from crystallization of intimately associated M1 partial melt segregations. There is no evidence for voluminous magmatic accretion giving rise to the high M1 thermal gradient. The M1 P–T path may be the result of either lithospheric thinning after both crustal thickening and burial of the supracrustal terrane, or concomitant crustal thickening and mantle lithosphere thinning.  相似文献   
6.
Plutons of the Naraku Batholith were emplaced into Proterozoic metasediments of the northern portion of the Eastern Fold Belt of the Mt Isa Inlier during two intrusive episodes approximately 200 million years apart. Structural relationships and geochronological data suggest that the older plutons (ca 1750 Ma) are contemporaneous with granites of the Wonga Batholith to the west. The Dipvale Granodiorite and the Levian Granite represent these older intrusive phases of the Naraku Batholith, and both contain an intense tectonic foliation, S1, which is interpreted to have formed during the north‐south shortening associated with D1 of the Isan Orogeny. The geometry of S1 form surfaces at the southern end of the Dipvale Granodiorite, and of the previously unrecognised sheeted contact, defines a macroscopic, steeply south‐southwest‐plunging antiform, which was produced by the regional D2 of the Isan Orogeny. S1 form surfaces in the Levian Granite define open F2 folds with wavelengths of several hundred metres. The structural age of emplacement of the Dipvale Granodiorite and the Levian Granite is interpreted to be pre‐ or syn‐ the regional D1. An intense foliation present in some of the younger (ca 1505 Ma) granites that comprise the bulk of the Naraku Batholith is interpreted to represent S3 of the Isan Orogeny. Foliations commonly have similar styles and orientations in both the pre‐D1 and younger plutons. This emphasises the simplicity with which regional fabrics can be, and probably have been, miscorrelated in the Eastern Fold Belt, and that the classification of granites in general on the basis of structural and geometric criteria alone is fraught with danger.  相似文献   
7.
Carboniferous‐Permian volcanic complexes and isolated patches of Upper Jurassic — Lower Cretaceous sedimentary units provide a means to qualitatively assess the exhumation history of the Georgetown Inlier since ca 350 Ma. However, it is difficult to quantify its exhumation and tectonic history for earlier times. Thermochronological methods provide a means for assessing this problem. Biotite and alkali feldspar 40Ar/39Ar and apatite fission track data from the inlier record a protracted and non‐linear cooling history since ca 750 Ma. 40Ar/39Ar ages vary from 380 to 735 Ma, apatite fission track ages vary between 132 and 258 Ma and mean track lengths vary between 10.89 and 13.11 μm. These results record up to four periods of localised accelerated cooling within the temperature range of ~320–60°C and up to ~14 km of crustal exhumation in parts of the inlier since the Neoproterozoic, depending on how the geotherm varied with time. Accelerated cooling and exhumation rates (0.19–0.05 km/106 years) are observed to have occurred during the Devonian, late Carboniferous‐Permian and mid‐Cretaceous — Holocene periods. A more poorly defined Neoproterozoic cooling event was possibly a response to the separation of Laurentia and Gondwana. The inlier may also have been reactivated in response to Delamerian‐age orogenesis. The Late Palaeozoic events were associated with tectonic accretion of terranes east of the Proterozoic basement. Post mid‐Cretaceous exhumation may be a far‐field response to extensional tectonism at the southern and eastern margins of the Australian plate. The spatial variation in data from the present‐day erosion surface suggests small‐scale fault‐bounded blocks experienced variable cooling histories. This is attributed to vertical displacement of up to ~2 km on faults, including sections of the Delaney Fault, during Late Palaeozoic and mid‐Cretaceous times.  相似文献   
8.
Kaolinite claystones that are similar in structure, texture and composition to the kaolin tonsteins of Western Europe, and to some of the flint clays of North America, are associated with the Wongawilli Seam in the southern part of the Sydney Basin, where they form thin persistent bands within the coal and somewhat thicker deposits immediately overlying the seam. The thin bands within the coal are fine grained and consist of brecciated to pelletal clasts composed of well‐ordered kaolinite set in a matrix of similar composition. The thicker deposits overlying the seam are much coarser grained and appear restricted in occurrence to the basin margins. They contain a predominance of oolites with kaolinite clasts bonded by a relatively sparse matrix and in places, remarkable ‘outgrowths’ of vermicular kaolinite. The origin of the deposits is discussed, and it is concluded that most of the unusual features of these claystones can be ascribed to a fluvial environment.  相似文献   
9.
In the Precambrian rocks west and southwest of the Mount Isa Fault three significant fold generations are recognized. Within individual successions, units containing an early phase of deformation are juxtaposed by a late fault against a sequence that does not share these earlier events.

Many of the large‐scale structures in the Judenan Beds are first‐generation folds, whereas west of the Judenan Beds the area is dominated by second‐generation folds. These two sets of folds are tentatively correlated and are referred to as the Judenan Folds. An earlier set of pre‐Judenan folding is only found in the units west of the Judenan Beds. One phase of the Sybella Granite is also associated with the Judenan folding. Later small‐scale folds associated with a crenulation cleavage are, however, of little regional importance and are commonly found only in zones of highly deformed rocks.  相似文献   
10.
Reply     

The Archaean granite‐greenstone rocks of the Marymia Inlier outcrop within Proterozoic rocks forming the Capricorn Orogen. Five major deformation events are recognised in the rocks of the Plutonic Well and Baumgarten greenstone belts. The first two events were Late Archaean and synchronous with major epithermal gold mineralisation in the belts. Palaeoproterozoic extensional faulting was probably related to the early stages of the Capricorn Orogeny. The fourth event records a compressional phase of the Capricorn Orogeny associated with greenschist‐facies metamorphism, whereas the last major event involved wrench faulting associated with minor folding. The Archaean tectonic history, rock types and timing of mineralisation strongly suggest that the Marymia Inlier is part of the Yilgarn Craton, and that each of the provinces in the craton experienced the same geological history since 2.72 Ga. The inlier is now interpreted to include two components; one is the eastern or northern extension of either the Narryer Terrane, Murchison Province or Southern Cross Province, and the other is the northwestern extension of the Eastern Goldfields Province. The Jenkin Fault, which was active in Proterozoic times, separates these two components.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号