首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   17篇
  国内免费   1篇
测绘学   5篇
地球物理   57篇
地质学   4篇
天文学   5篇
综合类   2篇
自然地理   1篇
  2023年   1篇
  2020年   4篇
  2019年   13篇
  2018年   4篇
  2017年   3篇
  2016年   2篇
  2014年   4篇
  2013年   4篇
  2012年   7篇
  2011年   3篇
  2010年   5篇
  2008年   3篇
  2007年   4篇
  2006年   1篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1995年   2篇
  1994年   1篇
排序方式: 共有74条查询结果,搜索用时 46 毫秒
1.
基于GPS技术的农田信息采集系统的现状及展望   总被引:3,自引:0,他引:3  
基于GPS技术实现对农田信息的定位采集,是目前精细农业领域中重要应用之一,本文在分析了当前国外、国内相关农田信息采集系统现状的基础上,提出了国内研制开发基于GPS技术的农田信息采集发展思路。  相似文献   
2.
In the past few years, distributed acoustic sensing has gained great interest in geophysics. This acquisition technology offers immense improvement in terms of efficiency when compared with current geophysical acquisition methods. However, the fundamentals of the measurement are still not fully understood because direct comparisons of fibre data with conventional geophysical sensors are difficult during field tests. We present downscaled laboratory experiments that enabled us to characterise the relationship between the signals recorded by conventional seismic point receivers and by distributed fibre optic sensors. Interrogation of the distributed optical fibre sensor was performed with a Michelson interferometer because this system is suited to compact test configurations, and it requires only a very simple data processing workflow for extracting the signal outputs. We show acoustic data that were recorded simultaneously by both the fibre optical interferometer and conventional three‐component accelerometers, thus enabling the comparison of sensor performance. We present results focused on the directionality of fibre measurements, on the amplitude variation with angle of incidence, and on the transfer function that allows accelerometer signals to be transformed into optical fibre signals. We conclude that the optical fibre response matches with the array of the displacement differences of the inline accelerometers deployed along the fibre length. Moreover, we also analysed the influence of various types of coupling and fibre cable coating on the signal responses, emphasising the importance of these parameters for field seismic acquisitions when using the distributed fibre optic technology.  相似文献   
3.
We present a parsimonious wave‐equation travel‐time inversion technique for refraction waves. A dense virtual refraction dataset can be generated from just two reciprocal shot gathers for the sources at the endpoints of the survey line, with N geophones evenly deployed along the line. These two reciprocal shots contain approximately 2N refraction travel times, which can be spawned into refraction travel times by an interferometric transformation. Then, these virtual refraction travel times are used with a source wavelet to create N virtual refraction shot gathers, which are the input data for wave‐equation travel‐time inversion. Numerical results show that the parsimonious wave‐equation travel‐time tomogram has about the same accuracy as the tomogram computed by standard wave‐equation travel‐time inversion. The most significant benefit is that a reciprocal survey is far less time consuming than the standard refraction survey where a source is excited at each geophone location.  相似文献   
4.
Surface arrays became an important tool for monitoring the induced seismicity in hydraulic fracturing experiments and for assessing the impact of fluid injection on the fracturing process of microearthquakes. The layout of sensors plays a key role in this task because it controls the accuracy of event locations and retrieved seismic moment tensors. We simulate various configurations of grid sensor arrays characterized by a different number of sensors, array span, sensor spacing, depth of sources and various shear/tensile source mechanisms of events. The moment tensor inversion is carried out using synthetically calculated P-wave amplitudes with added random noise. A bias in the solutions is evaluated by errors in the double-couple percentage of inverted moment tensors because the double-couple errors inform us about the sensitivity of the network to detect the shear/tensile fracturing mode of induced microearthquakes. The results show that the accuracy of the double-couple percentage is mostly controlled by the offset-to-depth ratio R defined as the ratio of half of the network size to the event depth. The optimum value of R is in the range of 0.75–1.5 irrespective of the type of the focal mechanism. If 121 (11 × 11) sensors are distributed in a regular grid and recorded data are characterized by a 10% random noise, the double-couple error is less than 6%. This error increases, if R is not optimum or if the number of sensors is reduced. However, even sparse arrays with 49 (7 × 7) or 16 (4 × 4) sensors can yield a reasonable accuracy, provided the surface grid arrays are designed to have an optimum size.  相似文献   
5.
Successful estimation of airgun-array signatures from near-field measurements depends on the accuracy of poorly controlled model parameters such as the effective sea surface reflection coefficient and source depth. We propose a method for prediction of robust source signatures, which are insensitive to fluctuations of the latter parameters. The method uses vertical pairs of near-field hydrophones to measure near-field pressure and its vertical gradient, combination of which eliminates sea surface reflections from the near-field data. This excludes the uncertainty related to the fluctuating sea state and source depth from the process of inversion of the near-field data for source signature. The method explicitly separates the recorded near-field pressure into its up and down going components, which allows one to measure the effective frequency- and angle-dependent sea surface reflection coefficient right at the source, as well as to estimate the actual source depth. Tests on synthetic and field data demonstrate robust performance of the method.  相似文献   
6.
In airborne gravity gradiometry, the Gravity Module Assembly is an optional gravimeter unit that is mounted on the same stabilized platform as the Full Tensor Gradiometer. Direct measurements of the gravity field are needed from this device to constrain the long wavelengths when gradient data are integrated mathematically to form high-resolution gravity fields. The Gravity Module Assembly is, however, capable of providing independent gravity data with a specification approaching that expected from a dedicated airborne gravity system. Presented here is an error analysis of data from this instrument collected alongside the Full Tensor Gradiometer during an airborne survey. By having both gradiometry and gravity datasets, comparisons of the information content in these two types of measurement are made.  相似文献   
7.
During the time taken for seismic data to be acquired, reservoir pressure may fluctuate as a consequence of field production and operational procedures and fluid fronts may move significantly. These variations prevent accurate quantitative measurement of the reservoir change using 4D seismic data. Modelling studies on the Norne field simulation model using acquisition data from ocean-bottom seismometer and towed streamer systems indicate that the pre-stack intra-survey reservoir fluctuations are important and cannot be neglected. Similarly, the time-lapse seismic image in the post-stack domain does not represent a difference between two states of the reservoir at a unique base and monitor time, but is a mixed version of reality that depends on the sequence and timing of seismic shooting. The outcome is a lack of accuracy in the measurement of reservoir changes using the resulting processed and stacked 4D seismic data. Even for perfect spatial repeatability between surveys, a spatially variant noise floor is still anticipated to remain. For our particular North Sea acquisition data, we find that towed streamer data are more affected than the ocean-bottom seismometer data. We think that this may be typical for towed streamers due to their restricted aperture compared to ocean-bottom seismometer acquisitions, even for a favourable time sequence of shooting and spatial repeatability. Importantly, the pressure signals on the near and far offset stacks commonly used in quantitative 4D seismic inversion are found to be inconsistent due to the acquisition timestamp. Saturation changes at the boundaries of fluid fronts appear to show a similar inconsistency across sub-stacks. We recommend that 4D data are shot in a consistent manner to optimize aerial time coverage, and that additionally, the timestamp of the acquisition should be used to optimize pre-stack quantitative reservoir analysis.  相似文献   
8.
颜恩祝 《湖泊科学》2001,13(1):29-34
水文遥测系统工作制式不同,系统的验收标准也不同,水文遥测系统的组网结构不同,系统可靠性的分析也不同。本文用概率方法对太湖流域水文遥测系统的可靠性进行探讨,对带存储功能的应答系统采用系统可靠度衡量,而不采用月平均数据畅通率衡量;同时讨论不同的系统结构对可靠性的影响,这种以概率统计的方法分析水文遥测系统的可靠性,对水文遥测系统建设的验收标准制定和水文遥测系统结构设计具有重要意义。  相似文献   
9.
A modular borehole monitoring concept has been implemented to provide a suite of well‐based monitoring tools that can be deployed cost effectively in a flexible and robust package. The initial modular borehole monitoring system was deployed as part of a CO2 injection test operated by the Southeast Regional Carbon Sequestration Partnership near Citronelle, Alabama. The Citronelle modular monitoring system transmits electrical power and signals, fibre‐optic light pulses, and fluids between the surface and a reservoir. Additionally, a separate multi‐conductor tubing‐encapsulated line was used for borehole geophones, including a specialized clamp for casing clamping with tubing deployment. The deployment of geophones and fibre‐optic cables allowed comparison testing of distributed acoustic sensing. We designed a large source effort (>64 sweeps per source point) to test fibre‐optic vertical seismic profile and acquired data in 2013. The native measurement in the specific distributed acoustic sensing unit used (an iDAS from Silixa Ltd) is described as a localized strain rate. Following a processing flow of adaptive noise reduction and rebalancing the signal to dimensionless strain, improvement from repeated stacking of the source was observed. Conversion of the rebalanced strain signal to equivalent velocity units, via a scaling by local apparent velocity, allows quantitative comparison of distributed acoustic sensing and geophone data in units of velocity. We see a very good match of uncorrelated time series in both amplitude and phase, demonstrating that velocity‐converted distributed acoustic sensing data can be analyzed equivalent to vertical geophones. We show that distributed acoustic sensing data, when averaged over an interval comparable to typical geophone spacing, can obtain signal‐to‐noise ratios of 18 dB to 24 dB below clamped geophones, a result that is variable with noise spectral amplitude because the noise characteristics are not identical. With vertical seismic profile processing, we demonstrate the effectiveness of downgoing deconvolution from the large spatial sampling of distributed acoustic sensing data, along with improved upgoing reflection quality. We conclude that the extra source effort currently needed for tubing‐deployed distributed acoustic sensing vertical seismic profile, as part of a modular monitoring system, is well compensated by the extra spatial sampling and lower deployment cost as compared with conventional borehole geophones.  相似文献   
10.
The exploration for and exploitation of deep Lower Rotliegend gasfields onshore in North Germany often suffers from poor surface seismic imaging. This is owing to the depth of the reservoirs and a thick and complex Zechstein salt overburden. RWE Dea conducted a 3D vertical seismic profile (VSP) survey in a low‐performing production well after the borehole was plugged near total depth. Our main objective was to improve the seismic image of the reservoir zone in the vicinity of the well to determine a new landing point for a planned sidetrack. Because acquisition was in a densely populated and also partially environmentally protected area, there were surface restrictions concerning source deployment. Additionally, due to the complex geological setting, we conducted two 2D VSP field tests and thorough pre‐survey modelling to achieve the best results in terms of seismic imaging, environmental impact and reasonable cost. Deformation bands in the drill core suggest that the initial well was drilled close to a major fault, which was regarded as the main reason for the disappointing production rate. Therefore, we put special emphasis on fault detection in our processing and interpretation. Our interpretation approach used an enhanced structural mapping workflow that helped to design a sidetrack. When the sidetrack was drilled two years later, it ended up being one of the most productive wells in the field.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号