首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67篇
  免费   4篇
  国内免费   7篇
大气科学   3篇
地球物理   4篇
地质学   68篇
自然地理   3篇
  2024年   1篇
  2023年   6篇
  2022年   3篇
  2021年   4篇
  2020年   8篇
  2019年   6篇
  2018年   3篇
  2017年   1篇
  2016年   4篇
  2015年   5篇
  2014年   7篇
  2013年   3篇
  2012年   5篇
  2011年   2篇
  2010年   1篇
  2009年   3篇
  2008年   2篇
  2007年   3篇
  2005年   2篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  1989年   1篇
排序方式: 共有78条查询结果,搜索用时 828 毫秒
1.
长春季节性冻土地区土体微观结构与水分迁移的关系   总被引:1,自引:0,他引:1  
利用扫描电子显微镜(SEM)技术,从土体微观结构特征出发,对长春—吉林公路某路段季节冻土的粒度成分、结构单元体成分、孔隙特征及结构特征进行了定量分析,并对其与水分迁移的关系进行了讨论。从SEM图像定量分析中可以看出,研究路段的土体,其微观颗粒——结构单元体、孔隙的定向性均较差,粒内微小孔隙发育,土体尽管在粘粒含量较高的情况下,也表现出孔隙主要在1~2μm内分布,即毛细孔隙极发育,说明样品具有各向同性的特点,即在外界条件相同的情况下水分迁移的通道在水平和垂直方向上具有相同的性质。  相似文献   
2.
冻融作用对地气系统能量交换的影响分析   总被引:7,自引:12,他引:7  
李述训  南卓铜  赵林 《冰川冻土》2002,24(5):506-511
通过对温度波在地层内传播过程问题的分析研究, 讨论土在冻结和融化过程对地气系统能量交换的影响, 并以亚粘土为例应用近似方法计算了在冻结和融化过程地气系统能量交换和地温变化特征, 同时将相同条件下发生冻融作用与不发生冻融作用情况地气系统热交换量进行了比较. 结果表明, 冻融作用使地气系统热交换加强, 同时吸热和放热的过程也发生了改变.  相似文献   
3.
季节冻土对包气带水分迁移的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
采用智能化土壤墒情监测仪,对东北吉林集安季节冻土带进行地温和含水率观测,历时一个水文年。通过分析不同深度地温、含水率随时间的变化,研究地温场变化、降水入渗等因素对水分迁移的影响。寒季,气温急剧下降,地温随深度增加而增高,气态水在包气带上部的低温带凝结,当凝结速率大于渗透速率时,含水率不断增加,水分蓄积。季节冻土形成后,孔隙水以固态水的形式储存,是包气带上部水分主要的聚集期。暖季,地温随深度增加而降低,气态水向下运移凝结,即使降水入渗量很大也不会引起水分蓄积。因此,温度场控制着气态水凝结方向,是引起包气带内水分运移的重要影响因素之一。  相似文献   
4.
严寒地区高速铁路路基冻胀变形监测分析   总被引:20,自引:8,他引:12  
穿越我国东北地区的哈尔滨至大连高速铁路(哈大高铁)是世界上首条投入运营的新建严寒地区高速铁路,路基冻胀防治采用了换填材料、防水等综合措施. 为评价冻胀防治效果及路基工程运营状况,通过对哈大高铁开通后首个冻融期(2012-2013年度)路基全线9 641个凸台观测点水准人工监测数据综合分析,研究路基冻胀变形发生、发展和变化规律. 结果表明:哈大高铁路基冻胀变形包括冻胀快速发展期、冻胀稳定发展期和融化回落期3个阶段,路基普遍发生冻胀但变形处于可控状态;路基的冻胀变形以基床表层冻胀为主,且其程度与路基结构有关;整体上全线过渡段冻胀轻微,路堤次之,路堑和底座板接缝处较为严重. 建议后续冻胀整治应以减少路基表水下渗、控制基床表层冻胀变形为重点;类似工程设计中,应增加以桥代路段落,将路基表层改性为不冻胀整体结构.  相似文献   
5.
基于季节冻土微观结构特征的神经网络冻胀率仿真预测   总被引:1,自引:1,他引:0  
为了寻求基于宏观-微观物理参数间接得到季节冻土冻胀率的途径, 根据现有技术手段容易测试到土的性质参数, 利用BP神经网络法对季节冻土冻胀率进行预测. 选取微观孔隙参数及结构单元体参数各4个、 外部条件参数3个共11个参数, 建立季节冻土冻胀率神经网络预测模型. 结果表明: 在33个检验样本中, 误差最大为0.19, 最小为0.00, 有4个样本的误差在0.1~0.19之间, 其他样本误差都在0.05以下, 占总样本数的88%, 说明模型能反映冻胀变化的基本趋势. 因此, 文中建立的基于11个宏观微观物理参数的BP神经网络冻胀率预测模型是可行的.  相似文献   
6.
季节冻土区黑土耕层土壤冻融过程及水分变化   总被引:6,自引:2,他引:4  
利用黑龙江省水利科学研究院水利试验研究中心综合实验观测场2011年11月-2012年4月整个冻结融化期的实测野外黑土耕层土壤温度和水分数据, 对中-深季节冻土区黑土耕层土壤冻融过程中冻结和融化特征分阴、阳坡进行了分析, 研究了冻融过程中不同深度土壤水分的变化情况, 并探讨了降水对不同深度耕层土壤含水量变化的影响. 结果表明:黑土耕层土壤冻结融化过程分为5个阶段, 历时164 d, 约5.5个月. 阶段I, 秋末冬初黑土耕层土壤开始步入冻结期; 阶段II, 黑土耕层土壤整日处于冻结状态, 阴坡比同样深度的阳坡土壤温度低; 阶段III为黑土耕层土壤稳定冻结期; 阶段IV, 黑土耕层土壤步入昼融夜冻的日循环交替状态, 冻融循环的土层逐渐向深部发展, 阳坡比阴坡融化得更深、更早, 阴坡比阳坡经历冻融循环次数更多; 阶段V为稳定融化期, 在融化过程不存在冻融交替的现象, 直到整个冻层内的土壤全部消融. 各深度位置阴坡土壤温度的最高值出现时间比阳坡晚约0.5 h. 经过整个冻结融化期后, 阴、阳坡各层土壤含水量均大于冻结前, 阴坡土壤含水量比阳坡整体偏低. 在整个冻结融化期, 阳坡地下1 cm、5 cm、10 cm 及15 cm处含水量最大值出现在地下5 cm; 阴坡的含水量整体趋于平稳且在融化期受降水影响明显.  相似文献   
7.
巴丹吉林沙漠季节冻土特征   总被引:1,自引:1,他引:0  
宁凯  王乃昂  胡文峰  张洵赫  孙杰  王旭 《冰川冻土》2015,37(5):1209-1216
通过巴丹吉林沙漠腹地连续的地温观测和2014年1月的专题考察,发现巴丹吉林沙漠属于季节冻土区,年冻结时间长达4个月.沙漠内部的局地地形和湖泊分布是影响季节冻土分布差异的重要因素.迎风坡和背风坡冻土冻结深度显著大于丘间地冻结深度,湖泊的存在使湖泊周边地区最大冻结深度显著变浅.通过沙漠及其周边地区地温、气温、地气温差的分析,结合我们在巴丹吉林沙漠外围发现的末次冰期砂楔群,表明我国北方沙漠在末次冰期属于不连续的多年冻土区.  相似文献   
8.
章鑫  杜学彬  王丽 《冰川冻土》2017,39(4):824-833
地电场的变化与台址环境的水文、气象及地质背景等相关,在青藏高原东北部季节冻土区,11个地电场台站处于较高的海拔,据台址下覆场地属性分为A类(黄土型)和B类(高原草场型)台站。通过对青藏高原季节冻土区域的地电场和大地电流场的计算和分析,联系区域构造活动和地质环境得出以下认识:青藏高原东北部季节冻土区地电场变化对水热环境响应明显,冬、夏两季测值可能发生跃变;长周期的地电场变化曲线可能与台址附近气温变化相关;台站大地电流矢量在冻土部分冻融交替过程中发生方向和幅度值的改变。A类和B类台址显示出不同的季节变化规律,地电场曲线上升和下降的时间节点各异,这种现象可应用于监测该区域冻土冻融情况和冻土的时空演变。  相似文献   
9.
祁连山区黑河流域季节冻土时空变化研究   总被引:3,自引:0,他引:3  
季节冻土的时空变化对地—气水热交换、地表能量平衡、地表水文过程、生态系统及碳循环等有着非常重要的影响.利用黑河流域11个气象站40多年的气温数据和5 cm深度处的土壤温度数据,建立了月平均气温与土壤冻结天数之间的关系.同时应用月平均气温与冻结天数的相关关系和5 km网格化月平均气温及30 m分辨率的DEM数据,编制了黑河流域逐月季节冻土分布图,并按其空间分布特征,将逐月地表冻融状态划分为:完全冻结、不完全冻结和不冻结3种.系统研究了黑河流域2000-2009年逐月季节冻土分布及冻结概率的时空变化特征.在季节分配上,黑河流域完全冻结面积最大值出现在1月;不完全冻结面积最大值在11月;而不冻结面积最大值在6月和7月.在年际变化上,完全冻结状态的离差值在冷季变化大,暖季变化小;不完全冻结状态在一年的回暖期和降温初期,年际变化较大;不冻结状态分别在4月和10月变化较大.冻结概率在1月达到最大值,6月和7月降低到最小值.在空间分布上,黑河流域季节冻土的逐月分布与变化和冻结概率主要受海拔高度控制,纬度的影响次之.  相似文献   
10.
基于2000 - 2014年新疆伊犁地区不同海拔区域观测的冻融期内的冻土、 积雪和气象数据, 应用相关性分析和回归分析方法, 分析该地区季节冻土沿海拔的分布规律, 以及气温、 积雪对季节冻土特征的影响。结果表明: 伊犁地区表层土壤存在着每年11月份开始结冻, 于次年4月份完全融化的周期性变化。每个周期内土壤冻结时长随海拔以4 d·(100m)-1的趋势增加, 土壤最大冻结深度随海拔以3.9 cm·(100m)-1的趋势增加。土壤冻结时长与冻结期的平均气温具有显著负相关关系, 相关系数为-0.98(P<0.05)。土壤冻结日数与积雪覆盖历时呈正相关关系, 土壤的最大冻结深度与最大雪深呈负相关关系。随着海拔升高, 温度递减, 导致伊犁地区土壤最大冻结深度和土壤冻结日数整体呈现增加趋势。但在海拔相对较高的地区, 由于相对较厚积雪的影响, 出现土壤最大冻结深度随海拔升高而减小的反常现象。研究结果可为新疆伊犁地区季节冻土的分布对气候变化的响应研究提供支持, 帮助研究区域生态规划和水资源管理, 为农业发展制定适应气候变化对策。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号