首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   9篇
  国内免费   16篇
测绘学   1篇
大气科学   1篇
地球物理   42篇
地质学   52篇
海洋学   5篇
综合类   1篇
自然地理   19篇
  2021年   2篇
  2020年   2篇
  2019年   6篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   3篇
  2014年   4篇
  2013年   10篇
  2012年   2篇
  2011年   7篇
  2010年   7篇
  2009年   2篇
  2008年   6篇
  2007年   9篇
  2006年   9篇
  2005年   2篇
  2004年   4篇
  2003年   7篇
  2002年   4篇
  2001年   2篇
  2000年   3篇
  1999年   4篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1985年   2篇
排序方式: 共有121条查询结果,搜索用时 421 毫秒
1.
Soil water dynamics are central in linking and regulating natural cycles in ecohydrology, however, mathematical representation of soil water processes in models is challenging given the complexity of these interactions. To assess the impacts of soil water simulation approaches on various model outputs, the Soil and Water Assessment Tool was modified to accommodate an alternative soil water percolation method and tested at two geographically and climatically distinct, instrumented watersheds in the United States. Soil water was evaluated at the site scale via measured observations, and hydrologic and biophysical outputs were analysed at the watershed scale. Results demonstrated an improved Kling–Gupta Efficiency of up to 0.3 and a reduction in percent bias from 5 to 25% at the site scale, when soil water percolation was changed from a threshold, bucket-based approach to an alternative approach based on variable hydraulic conductivity. The primary difference between the approaches was attributed to the ability to simulate soil water content above field capacity for successive days; however, regardless of the approach, a lack of site-specific characterization of soil properties by the soils database at the site scale was found to severely limit the analysis. Differences in approach led to a regime shift in percolation from a few, high magnitude events to frequent, low magnitude events. At the watershed scale, the variable hydraulic conductivity-based approach reduced average annual percolation by 20–50 mm, directly impacting the water balance and subsequently biophysical predictions. For instance, annual denitrification increased by 14–24 kg/ha for the new approach. Overall, the study demonstrates the need for continued efforts to enhance soil water model representation for improving biophysical process simulations.  相似文献   
2.
苏北盘石山、练山地幔捕虏体的PGE地球化学   总被引:3,自引:0,他引:3  
通过锍镍火试金预富集法,分析了位于郯庐断裂带东侧的盘石山、练山地幔橄榄岩包体中铂族元素(PGE)和Au含量.不同于部分熔融残留成因地幔橄榄岩中通常所观察到的负斜率型或平坦型的分布模式,这两地的地幔橄榄岩以Pt、Pd、Ru相对富集,Ir、Rh相对亏损的"燕子型"分布模式为特征.Pt、Pd等不相容元素富集说明上地幔除经历过早期的部分熔融外,还经历了后期富Pt、Pd的高熔/岩比的熔(流)体的层析分离交代作用影响.盘石山地幔橄榄岩的PGE总量比练山高,Os的含量也比原始地幔值高;而练山地幔橄榄岩的Os含量比原始地幔值低,说明交代作用带走了练山地幔橄榄岩中的Os,却没有很大改变盘石山地幔橄榄岩中的Os含量,这可能与交代熔(流)体含硫量饱和程度有关.Rh的负异常可能与部分熔融过程中熔体较低的fo2有关.  相似文献   
3.
建立地层孔隙网络模型描述微观孔喉特征,利用逾渗方法计算基于微观渗流机理的相对渗透率曲线,并将之应用到数值模拟计算中,给出考虑微观渗流特征的方程,并进行数值求解,得到地层中流体分布特征。实例分析表明该方法可以得到基于微观特征的剩余油分布数量和形式,为调剖堵水、化学驱提供技术参数,实现微观渗流机理与宏观计算的结合。  相似文献   
4.
The elastic properties of a physical model representing a damaged rock matrix were studied using a square lattice deformed under tensile stress. The elastic modulusM of such a system varies in agreement with percolation theory as|x–x c | f , wherex is the damage parameter andx c the threshold value of the damage parameter,f3.6. Atxx c the scale dependence ofM can be expressed asML –f/v , whereL is the size of the sample andv the correlation exponent in percolation theory.The experimental results are of interest in assessing elastic properties in earthquake focal zones and fault zones in general.  相似文献   
5.
Connectivity is an important measure for assessing flow transport in rock, especially through fractures. In this paper, rock fracture systems are modelled by a discrete fracture model simulated by a marked point process. A connectivity index is then introduced to quantify the connectivity between any two points in space. Monte Carlo simulation is used to evaluate the connectivity index for stationary cases and relationships between the connectivity index and the parameters of the discrete fracture model are analysed. The average number of intersections per fracture, Xf, and the fracture intensity, P12 (P32), are calculated and the relationships between these parameters and the connectivity index are investigated, concluding that Xf is the more suitable parameter for the classification of rock mass flow properties. The relationships between the connectivity index and the percolation state of the fractured medium are also discussed. An edge correction is briefly discussed and a practical example is used to demonstrate the method of computing the connectivity index.  相似文献   
6.
Water percolation and flow processes in subsurface geologic media play an important role in determining the water source for plants and the transport of contaminants or nutrients, which is essential for water resource management and the development of measures for pollution mitigation. During June 2013, the dynamics of the rainwater, soil water, subsurface flows and groundwater in a shallow Entisol on sloping farmland were monitored using a hydrometric and isotopic approach. The results showed that effective mixing of rainwater and soil water occurred in hours. The rebound phenomenon of δD profiles in soils showed that most isotope‐depleted rainwater largely bypassed the soil matrix when the water saturation in the soil was high. Preferential‐flow, which was the dominant water movement pattern in the vadose zone, occurred through the whole soil profile, and infrequent piston‐flow was mainly found at 20–40 cm in depth. The interflow in the soil layer, composed of 75.2% rainwater, was only generated when the soil profile had been saturated. Underflow in the fractured mudrock was the dominant flow type in this hillslope, and outflow was dominated by base flow (groundwater flow) with a mean contribution of 76.7%. The generation mechanism of underflow was groundwater ridging, which was superimposed upon preferential‐flow composed mainly of rainwater. The quick mixing process of rainwater and soil water and the rapid movement of the mixture through preferential channels in the study soil, which shows a typical bimodal pore size distribution, can explain the prompt release of pre‐event water in subsurface flow. Water sources of subsurface flows at peak discharge could be affected by the antecedent soil water content, rain characteristics and antecedent groundwater levels. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
7.
We propose a new runoff model including an outflow process that was applied to two adjacent basins (CL, TL) located in Lambir Hills National Park in north‐central Sarawak, Malaysia. Rainfall, runoff, topography, and soil layer thickness were observed. About 19% of annual runoff was observed in the CL basin (21.97 ha), whereas about 46% was observed in the TL basin (23.25 ha). It was inferred that the CL basin has an outflow because of low base flow, small runoff peak, and excessive water loss. By incorporating the outflow process into the HYdrological CYcle MODEL, good agreement between the data generated by the model and that observed was shown, with the exception of the data from the rainless period. Then, the fitting parameters for each basin were exchanged, except for the outflow parameter, and the characteristics of each basin were compared by calculating virtual runoff. As a result, the low base flow of the CL basin was estimated by the movement of the rainwater that escaped from the basin as deep percolation or lateral flow (11% of rainfall). The potential of the CL basin for mitigating flood and drought appeared to be higher than that of the TL basin. This is consistent with the topographic characteristics of the CL basin, which has a gentler slope than the TL basin. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
8.
9.
The distributions of contact areas in single, natural fractures in quartz monzonite (Stripa granite) are found to have fractal dimensions which decrease fromD=2.00 to values nearD=1.96 as stress normal to the fractures is increased from 3 MPa up to 85 MPa. The effect of stress on fluid flow is studied in the same samples. Fluid transport through a fracture depends on two properties of the fracture void space geometry. the void aperture; and the tortuosity of the flow paths, determined through the distribution of contact area. Each of these quantities change under stress and contribute to changes observed in the flow rate. A general flow law is presented which separates these different effects. The effects of tortuosity on flow are largely governed by the proximity of the flow path distribution to a percolation threshold. A fractal model of correlated continuum percolation is presented which quantitatively reproduces the flow path geometries. The fractal dimension in this model is fit to the measured fractal dimensions of the flow systems to determine how far the flow systems are above the percolation threshold.  相似文献   
10.
应用农田水量平衡模型估算土壤水渗漏量   总被引:15,自引:0,他引:15       下载免费PDF全文
建立了一个农田水量平衡模型。并据于模型假设的条件,模拟计算了在冬小麦-夏玉米及冬小麦-裸地条件下历年1m土层土壤水渗漏量。结果表明,土壤水渗漏量与季节内降水量呈正相关,但在不同作物种植制度下有不同的相关关系式。不同水文频率年型下的渗漏量具有明显的差异,湿润年型下比干旱年型下的渗漏量多70~140mm,冬小麦-裸地比冬小麦~夏玉米种植条件下的渗漏量多30~50mm。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号