首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   241篇
  免费   27篇
  国内免费   24篇
测绘学   10篇
大气科学   3篇
地球物理   188篇
地质学   32篇
海洋学   35篇
天文学   3篇
综合类   8篇
自然地理   13篇
  2023年   3篇
  2022年   6篇
  2021年   3篇
  2020年   10篇
  2019年   11篇
  2018年   5篇
  2017年   2篇
  2016年   7篇
  2015年   4篇
  2014年   16篇
  2013年   12篇
  2012年   10篇
  2011年   22篇
  2010年   9篇
  2009年   10篇
  2008年   7篇
  2007年   13篇
  2006年   23篇
  2005年   18篇
  2004年   19篇
  2003年   17篇
  2002年   10篇
  2001年   10篇
  2000年   9篇
  1999年   6篇
  1998年   8篇
  1997年   5篇
  1996年   5篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1971年   1篇
排序方式: 共有292条查询结果,搜索用时 31 毫秒
1.
The proper usage of modal composition and geochemical classification of granitoids is discussed for assigning a proper nomenclature for the Angadimogar pluton, Kerala, southwestern India. This discussion is mainly aimed at addressing questions concerning the nomenclature of Angadimogar pluton (syenitevs. granite). Modal composition and whole-rock XRD data clearly show that the pluton exposed near Angadimogar is a quartz-syenite and its geochemistry is typical of a ferroan, metaluminous, alkali (A-type) granitoid  相似文献   
2.
Ambient seismic noise measurements were conducted inside the Cathedral of Cologne (Germany) for assessing its frequencies of vibration and for checking whether these occur in the range where soil amplification is expected. If this is the case, damages may increase in case of an earthquake due to an increased structural response of the building. Analysis of the ratio between the horizontal and vertical components of the spectra recorded at stations located inside the building as well as the ratio between the corresponding components of the spectra recorded simultaneously inside the building and at a reference station placed in the basement of the cathedral indicated several modes of vibration. Facilitated by these results an assessment of the seismic vulnerability was attempted for a 2D ground motion scenario using the finite element method.  相似文献   
3.
A general method is developed for optimal application of dampers and actuators by installing them at optimal location on seismic-resistant structures. The study includes development of a statistical criterion, formulation of a general optimization problem and establishment of a solution procedure. Numerical analysis of the seismic response in time-history of controlled structures is used to verify the proposed method for optimal device application and to demonstrate the effectiveness of seismic response control with optimal device location. This study shows that the proposed method for the optimal device application is simple and general, and that the optimally applied dampers and actuators are very efficient for seismic response reduction.  相似文献   
4.
In the new trend of seismic design methodology, the static pushover analysis is recommended for simple or regular structures whilst the time‐history analysis is recommended for complex structures. To this end, the applicable range of the pushover analysis has to be clarified. This study aims at investigating the applicability of pushover analysis to multi‐span continuous bridge systems with thin‐walled steel piers. The focus is concentrated on the response demand predictions in longitudinal or transverse directions. The pushover analysis procedure for such structures is firstly summarized and then parametric studies are carried out on bridges with different types of superstructure‐pier bearing connections. The considered parameters, such as piers' stiffness distribution and pier–0.5ptdeck stiffness ratio, are varied to cover both regular and irregular structures. Finally, the relation of the applicability of pushover analysis to different structural formats is demonstrated and a criterion based on the higher modal contribution is proposed to quantitatively specify the applicable range. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
5.
Hilbert-Huang变换在密频结构阻尼识别中的应用   总被引:14,自引:3,他引:14  
Hilbert—Huang变换是一种新的数据处理方法,由经验模分解(Empirical Mode Decomposition)技术及Hilbert变换两部分组成。本文研究此方法对于密频结构阻尼识别的应用。首先对于两自由度系统模型,说明该方法用于阻尼识别的步骤。进而研究存在频率密集现象的高层建筑的阻尼识别问题。上述结果与理论值及由半功率带宽法的识别值进行了比较,对比显示Hilbert.Huang方法较传统方法具有良好的识别密频结构阻尼的性能,适用于大型结构的系统识别。  相似文献   
6.
This article has two purposes. Firstly, a validation exercise of the modal summation technique for the computation of synthetic strong-motion records is performed for two regions of Europe (Umbria-Marche and south Iceland), using a variety of region specific crustal structure models, by comparing the predicted ground motion amplitudes with observed motions. It is found that the rate of decay of ground motions is well predicted by the theoretical decay curves but that the absolute size of the ground motions is underpredicted by the synthetic time-histories. This is thought to be due to the presence of low-velocity surface layers that amplify the ground motions but are not included in the crustal structure models used to compute the synthetic time-histories. Secondly, a new distance metric based on the computed theoretical decay curves is introduced which should have the ability to model the complex decay of strong ground motions. The ability of this new distance metric to reduce the associated scatter in empirically derived equations for the estimation of strong ground motions is tested. It is found that it does not lead to a reduction in the scatter but this is thought to be due to the use of crustal structure models that are not accurate or detailed enough for the regions studied. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
7.
The dynamic behaviour of two curved cable‐stayed bridges, recently constructed in northern Italy, has been investigated by full‐scale testing and theoretical models. Two different excitation techniques were employed in the dynamic tests: traffic‐induced ambient vibrations and free vibrations. Since the modal behaviour identified from the two types of test are very well correlated and a greater number of normal modes was detected during ambient vibration tests, the validity of the ambient vibration survey is assessed in view of future monitoring. For both bridges, 11 vibration modes were identified in the frequency range of 0ndash;10Hz, being a one‐to‐one correspondence between the observed modes of the two bridges. Successively, the information obtained from the field tests was used to validate and improve 3D finite elements so that the dynamic performance of the two systems were assessed and compared based on both the experimental results and the updated theoretical models. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
8.
A new complex modal analysis‐based method is developed in the frequency domain for efficient computation of the earthquake input energy to a highly damped linear elastic passive control structure. The input energy to the structure during an earthquake is an important measure of seismic demand. Because of generality and applicability to non‐linear structures, the earthquake input energy has usually been computed in the time domain. It is shown here that the formulation of the earthquake input energy in the frequency domain is essential for deriving a bound on the earthquake input energy for a class of ground motions and for understanding the robustness of passively controlled structures to disturbances with various frequency contents. From the viewpoint of computational efficiency, a modal analysis‐based method is developed. The importance of overdamped modes in the energy computation of specific non‐proportionally damped models is demonstrated by comparing the energy transfer functions and the displacement transfer functions. Through numerical examinations for four recorded ground motions, it is shown that the modal analysis‐based method in the frequency domain is very efficient in the computation of the earthquake input energy. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
9.
An Erratum has been published for this article in Earthquake Engng. Struct. Dyn. 2004; 33:1429. Based on structural dynamics theory, the modal pushover analysis (MPA) procedure retains the conceptual simplicity of current procedures with invariant force distribution, now common in structural engineering practice. The MPA procedure for estimating seismic demands is extended to unsymmetric‐plan buildings. In the MPA procedure, the seismic demand due to individual terms in the modal expansion of the effective earthquake forces is determined by non‐linear static analysis using the inertia force distribution for each mode, which for unsymmetric buildings includes two lateral forces and torque at each floor level. These ‘modal’ demands due to the first few terms of the modal expansion are then combined by the CQC rule to obtain an estimate of the total seismic demand for inelastic systems. When applied to elastic systems, the MPA procedure is equivalent to standard response spectrum analysis (RSA). The MPA estimates of seismic demand for torsionally‐stiff and torsionally‐flexible unsymmetric systems are shown to be similarly accurate as they are for the symmetric building; however, the results deteriorate for a torsionally‐similarly‐stiff unsymmetric‐plan system and the ground motion considered because (a) elastic modes are strongly coupled, and (b) roof displacement is underestimated by the CQC modal combination rule (which would also limit accuracy of RSA for linearly elastic systems). Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
10.
Two approximate methods for decomposing complicated inelastic dynamic responses of wall buildings into simple modal responses are presented. Both methods are based on the equivalent linear concept, where a non‐linear structure is represented by a set of equivalent linear models. One linear model is used for representing only one vibration mode of the non‐linear structure, and its equivalent linear parameters are identified from the inelastic response time histories by using a numerical optimizer. Several theoretical relations essential for the modal decomposition are derived under the framework of complex modal analysis. Various numerical examinations have been carried out to check the validity of the proposed modal decomposition methods, and the results are quite satisfactory in all cases. Fluctuating bending moment and shear at any location along the wall height contributed by each individual vibration mode can be obtained. Modal contributions to shear and flexural strength demands, as well as the corresponding modal properties, under various seismic loading conditions can also be identified and examined in detail. Furthermore, the effects of higher vibration modes on seismic demands of wall buildings are investigated by using the modal decomposition methods. Several new insights into the complicated inelastic dynamics of multi‐story wall buildings are presented. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号