首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   161篇
  免费   47篇
测绘学   1篇
地球物理   176篇
地质学   13篇
天文学   1篇
综合类   1篇
自然地理   16篇
  2022年   1篇
  2021年   5篇
  2020年   19篇
  2019年   14篇
  2018年   9篇
  2017年   13篇
  2016年   8篇
  2015年   3篇
  2014年   11篇
  2013年   11篇
  2012年   7篇
  2011年   14篇
  2010年   9篇
  2009年   5篇
  2008年   10篇
  2007年   8篇
  2006年   10篇
  2005年   4篇
  2004年   7篇
  2003年   6篇
  2002年   4篇
  2001年   2篇
  2000年   4篇
  1999年   5篇
  1998年   5篇
  1997年   4篇
  1996年   6篇
  1995年   2篇
  1987年   2篇
排序方式: 共有208条查询结果,搜索用时 15 毫秒
1.
2.
Much debate has occurred in catchment hydrology regarding the connectivity of flow paths from upslope areas to catchment outlets. This study was conducted in two catchments, one with three upper branches, in a loess soil with a fragipan that fosters lateral flow and exhibits an extensive distribution of soil pipe collapse features. The study aimed to determine the connectivity of multiple soil pipe networks as well as determine pipe flow velocities during storm events. Fluorescein dye was injected directly into soil pipes at the upper most pipe collapse feature of four different hillslopes. Breakthrough curves (BTC) were determined by sampling multiple pipe collapse features downslope. The BTCs were used to determine the ‘average’ (centre of mass) and ‘maximum’ (first arrival) flow velocities. This study confirmed that these catchments contain individual continuous soil pipe networks that extend over 190 m and connect the upper most hillslopes areas with the catchment outlet. While the flow paths are continuous, the individual pipe networks consist of alternating reaches of subsurface flow through soil pipes and reaches of surface flow through gullies formed by pipe collapses. In addition, flow can be occurring both through the subsurface soil pipes simultaneous with surface flow generated by artesian flow from the soil pipes. The pipe flow velocities were as high as 0.3 m/s, which was in the range of streamflow velocities. These pipe flow velocities were also in the range of velocities observed in pinhole erosion tests suggesting that these large, mature soil pipes are still actively eroding. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
3.
The Arctic hydrologic cycle is intensifying, as evidenced by increased rates of precipitation, evapotranspiration, and riverine discharge. However, the controls on water fluxes from terrestrial to aquatic systems in upland Arctic landscapes are poorly understood. Upland landscapes account for one third of the Arctic land surface and are often drained by zero‐order geomorphic flowpath features called water tracks. Previous work in the region attributed rapid runoff response at larger stream orders to water tracks, but models suggest water tracks are hydrologically disconnected from the surrounding hillslope. To better understand the role of water tracks in upland landscapes, we investigated the surface and subsurface hydrologic responses of 6 water tracks and their hillslope watersheds to natural patterns of rainfall, soil thaw, and drainage. Between storms, both water track discharge and the water table in the hillslope watersheds exhibited diel fluctuations that, when lagged by 5 hr, were temporally correlated with peak evapotranspiration rate. Water track soils remained saturated for more of the summer season than soils in their surrounding hillslope watersheds. When rainfall occurred, the subsurface response was nearly instantaneous, but the water tracks took significantly longer than the hillslopes to respond to rainfall, and longer than the responses previously observed in nearby larger order Arctic streams. There was also evidence for antecedent soil water storage conditions controlling the magnitude of runoff response. Based on these observations, we used a broken stick model to test the hypothesis that runoff production in response to individual storms was primarily controlled by rainfall amount and antecedent water storage conditions near the water track outlet. We found that the relative importance of the two factors varied by site, and that water tracks with similar watershed geometries and at similar landscape positions had similar rainfall–runoff model relationships. Thus, the response of terrestrial water fluxes in the upland Arctic to climate change depends on the non‐linear interactions between rainfall patterns and subsurface water storage capacity on hillslopes. Predicting these interactions across the landscape remains an important challenge.  相似文献   
4.
Precipitation runoff is a critical hillslope hydrological process for downslope streamflow and piedmont/floodplain recharge. Shimen hillslope micro‐catchment is strategically located in the central foothill region of Taihang Mountains, where runoff is crucial for water availability in the piedmont corridors and floodplains of north China. This study analyzes precipitation‐runoff processes in the Shimen hillslope micro‐catchment for 2006–2008 using locally designed runoff collection systems. The study shows that slope length is a critical factor, next only to precipitation, in terms of runoff yield. Regression analysis also shows that runoff is related positively to precipitation, and negatively to slope length. Soil mantle in the study area is generally thin and is therefore not as critical a runoff factor as slope length. The study shows a significant difference between overland and subsurface runoff. However, that between the 0–10 and 10–20 cm subsurfaces is insignificant. Runoff hardly occurs under light rains (<10 mm), but is clearly noticeable under moderate‐to‐rainstorm events. In the hillslope catchment, vertical infiltration (accounting for 42–84% of the precipitation) dominates runoff processes in subsurface soils and weathered granite gneiss bedrock. A weak lateral flow (at even the soil/bedrock interface) and the generally small runoff suggest strong infiltration loss via deep percolation. This is critical for groundwater recharge in the downslope piedmont corridors and floodplains. This may enhance water availability, ease water shortage, avert further environmental degradation, and reduce the risk of drought/flood in the event of extreme weather conditions in the catchment and the wider north China Plain. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
5.
Surface soil moisture has been extensively studied for various land uses and landforms. Although many studies have reported potential factors that control surface soil moisture over space or time, the findings have not always been consistent, indicating a need for identification of the main factors. This study focused on the static controls of topographic, soil, and vegetation features on surface soil moisture in a steep natural forested headwater catchment consisting of three hillslope units of a gully area, side slope, and valley‐head slope. Using a simple correlation analysis to investigate the effects of the static factors on surface soil moisture at depths of 0–20 cm at 470 points in 13 surveys, we addressed the characteristics of surface soil moisture and its main controlling factors. The results indicated that the mean of surface soil moisture was in the decreasing order of gully area > valley‐head slope > side slope. The relationship between the mean and standard deviation of surface soil moisture showed a convex‐upward shape in the headwater catchment, a negative curvilinear shape in the gully area, and positive curvilinear shapes at the side and valley‐head slopes. At the headwater catchment and valley‐head slope, positive contributions of soil porosity and negative contributions of slope gradient and saturated hydraulic conductivity were the main controlling factors of surface soil moisture under wetter conditions, whereas positive contributions of topographic wetness index and negative contributions of vegetation density were the main controlling factors of surface soil moisture under drier conditions. At the side slope underlain by fractured bedrocks, only saturated hydraulic conductivity and vegetation density were observed to be the controlling factors. Surface soil moisture in the gully area was mainly affected by runoff rather than were static features. Thus, using hillslope units is effective for approximately estimating the hydrological behaviours of surface moisture on a larger scale, whereas dependency between the main static factors and moisture conditions is helpful for estimating the spatial distributions of surface moisture on a smaller scale.  相似文献   
6.
Abstract

Abstract The role of accuracy in the representation of infiltration on the effectiveness of real-time flood forecasting models was investigated. A simple semi-distributed model of conceptual type with adaptive estimate of hydraulic characteristics included in the infiltration component was selected. Infiltration was described by a very accurate approach recently formulated for complex rainfall patterns, or alternatively through a simpler formulation known as an extension of the classical time compression approximation. The results indicated that, for situations involving a significant rainfall variability in space, the inaccuracy in the representation of infiltration cannot be corrected by the adaptive component of the rainfall–runoff model. A preliminary analysis of the role of an approximation of saturated hydraulic conductivity to be used in each homogeneous area of the semi-distributed model used both in non-adaptive version and in real-time is also presented.  相似文献   
7.
MATHEMATICALMODELOFOVERLANDFLOWANDMECHANISMOFSOILCONSERVATIONFORFORESTEDSTEEPHILLSLOPE(1)AnalyticalSolutiontotheOverlandFlowo...  相似文献   
8.
9.
A new equation to assess hillslope sediment production, based on physical and probabilistic approaches, is presented. The equation, which allows the computation of the delivery ratio for every event, considers the physical variables of travel distance, stream power, settling velocity and gross erosion. The probability density function that arises from the new formulation is solved using the principle of maximum entropy. Based on data from five watersheds in both tropical and temperate zones, the new delivery parameter Kv is calibrated and associated with vegetation cover and conservation practice. The proposed equation is rationally based in relation to parameter Kv. The entropy‐based equation was applied to assess sediment yield in two other experimental watersheds, showing good predictability for the set (mean absolute error of 20·8%). No systematic error was found in the analysed data. The entropy‐based equation showed good predictability for long‐term sets of data and for high‐erosivity events, but did not perform well for the low‐erosivity ones. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
10.
坡面流与坡面侵蚀动力过程研究的最新进展*   总被引:21,自引:3,他引:18  
胡世雄  靳长兴 《地理研究》1998,17(3):326-335
在回顾了坡面流及坡面侵蚀过程研究的简史与现状的基础之上,全面总结了坡面流形成机理及其模式、坡面流水动力学特性、坡面侵蚀动力过程及其侵蚀产沙模型诸方面研究的最新进展,并对坡面流各要素分析及坡面小侵蚀陡坎的形成等进行了一些探讨。最后,提出了坡面流及坡面侵蚀过程研究中存在的主要问题及未来展望。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号