首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
大气科学   2篇
地球物理   1篇
  2009年   1篇
  2002年   1篇
  1996年   1篇
排序方式: 共有3条查询结果,搜索用时 140 毫秒
1
1.
A sensitivity analysis is performed in order to study recently observed changes in atmospheric methane and carbon monoxide trends. For the analysis we have adapted a one-dimensional transport/chemistry model in order to comply with changes in vertical transport, stratosphere-troposphere flux of ozone, the water vapour cycle and the short-wave radiative transfer. In addition we have formulated an improved relationship which expresses the steady state OH concentration in terms of longer lived compounds which has a fair agreement with the one-dimensional model results. An analysis of the observed changes and trends in methane and carbon monoxide shows that both emissions and changes in global OH concentrations can be main causes for the observed changes. Average methane emissions have slowed down, particularly in the NH, in the last five years, though perhaps not very significantly. Carbon monoxide emissions are decreasing faster in the last couple of years than in the period 1983–1990. The study suggests that climate fluctuations (tropospheric water vapour, temperature and convective activity) and the stratospheric ozone depletion (tropospheric UV radiation) have a significant influence on tropospheric composition and thus on trends in methane and carbon monoxide concentrations.The IMAU is partner in the Netherlands Centre for Climate Research (CCR).  相似文献   
2.
3.
Within the German Tropospheric Research Program (TFS) a series of projects were performed focussing on aspects of radiation transfer and the effects of UV-radiation on air chemistry. The individual projects covered laboratory investigations, instrument development for photolysis processes as well as field studies of actinic radiation and comparison to model calculations. One and three-dimensional models were tested against field campaign data. The results confirm the improvement of measurement technology achieved through deployment of new techniques like spectroradiometry that offer a wider range of investigations than was previously attainable using chemical actinometry or fixed wavelength filter radiometry. Reasonable agreement was also found between measurements and models for a few selected and well defined cloudy conditions. On the other hand, using simple stratiform geometry models yielded significant deviations between measurement and model in both directions particularly in the case of high zenith angles and with high aerosol load. Further tools both for experimental investigations and for model calculations were developed within the framework of the Troposphere Research Program (TFS) and deficiencies were identified demanding further investigations when broken clouds and more complex cloud layers prevail.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号