首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
地球物理   11篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
排序方式: 共有11条查询结果,搜索用时 398 毫秒
1.
Rare earth patterns of surface and groundwaters near big cities often show anthropogenic Gd (Gdant) anomalies in addition to geogenic Ce and Y anomalies. The Gdant anomaly is caused by very stable organic complexes, one of which is gadopentetic acid, Gd‐DTPA. Derivatives of this and similar compounds are used as contrast agents in magnetic resonance imaging (MRI) of the human blood system. The organic Gd complexes are stable enough to pass nearly unaffected through sewage treatment plants and are, thereafter, discharged into surface water systems. Water of the rapidly flowing Isarco/Eisack and Adige/Etsch rivers (Provinces of Trento and Bolzano/Bozen, NE Italy) and their tributaries show remarkable variations in anthropogenic Gd contents (Gdant). Low Gdant values are found on Monday and Tuesday, whereas high values are observed during the remaining weekdays. Reliable Gdant balances are calculated for the river system at the confluence of the Adige and its tributaries. At two places local decrease of Gdant indicates exfiltration of groundwater. It is demonstrated that Gdant can be used as a reliably conservative tracer to study the water budget in rapidly flowing alpine river systems. The studied different river waters show considerable negative Ce and positive Y anomalies. Negative Ce anomalies are caused by scavenging of Ce(III) by FeO(OH) precipitates and subsequent oxidation to CeO2. Y anomalies are attributed to less sorption of Y than REE onto particulate matter. Thus, Y moves faster than REE. Both, Ce and Y anomalies, are of geogenic origin.  相似文献   
2.
Groundwater bores act as traps. Net samplers are regularly used for sampling this type of trap for fauna. To enable direct comparisons of faunal communities in groundwater bores and stream sediments, stream sediment tubes were built similar to groundwater bores and were sampled with net samplers for fauna. These stream sediment tubes consisted of a tube anchored in the stream sediment, also called interstitial space. To test the efficacy of this trap method in stream sediments, it was compared to another type of trap, Hahn's trap. Faunal communities sampled by a net in the stream sediment tubes did not differ hugely from fauna in Hahn's trap samples. Physical and chemical factors of sampled water in both the stream sediment tubes, the surrounding interstitial sediments and the second type of traps, Hahn's traps, showed that water in both the tubes and Hahn's traps was closely related to interstitial water. The net sampler is inexpensive and easy to handle. It is suggested that sampling stream tubes with nets may be an appropriate method for long‐term monitoring studies.  相似文献   
3.
GC/MS Nontarget Analysis to Examine an Organic Groundwater Contamination. Part II: Graphical and Multivariate Methods for Searching Key Substances In the nontarget analysis, a maximum of organic substances was extracted by a sequence which separates high polar, medium polar, and nonpolar compounds. This leads to the detection of 477 different organic substances in the example of the groundwater contamination investigated. To reduce the high expense for an exact identification of 477 compounds as a first step the individual compound is defined as a data set of retention time and the mass spectrum belonging to this retention time. The table of data contains now 477 individual compounds in groundwater samples collected at 10 different locations. The application of mathematical filters helps to reduce the size of the data set. Graphical methods enable large amounts of data to be visualized in a clear manner and enable to detect patterns in a data set. These patterns are the key to select typical compounds as indicator substances for the contamination source as well as the geogenic background. Similarities between the groundwater samples should not be changed by selection of the indicator compounds. Therefore, cluster analysis was applied as a controlling instrument for the final selection of the indicator compounds. The combination of graphical and multivariate data analysis is a useful tool to deduce indicator compounds for monitoring and control of complex environmental pollution states.  相似文献   
4.
Assessing the Suitability of a Molecularbiological Method To Characterise the Microbial Populations in Groundwater A molecularbiological technique was used to characterise the bacterial community structure of groundwater habitats. This method consists of the isolation of bacterial DNA from the samples, amplification of 16S rDNA by PCR (polymerase chain reaction), and separation of the amplified DNA by DGGE (denaturing gradient gel electrophoresis). By using more specific primer combinations in the PCR instead of universal eubacterial primers, also groups of microorganisms (Proteobacteria, sulfate reducer, Archaea) were determined. The resulting DGGE patterns that reflect the microbial diversity are compared and differences or similarities evaluated. In the present studies, groundwater from different sites (bank filtrate, artificially recharged groundwater, and natural groundwater) and with changing redox milieus (aerobic, anaerobic) were investigated as well as the solid aquifer material. Besides, samples were taken from the different stages of artificial groundwater recharge, i.e., from surface water to the drain tile. Samples from groundwater derived from sites with different hydrogeochemical or hydrological conditions like bank filtrate and recharged groundwater revealed great differences in DGGE patterns indicating a characteristic species composition in these habitats, while samples taken at different times from the same groundwater showed only small seasonal variations. Clearly different patterns were also found for groundwater and the adjacent solid material as well as for anaerobic and aerobic groundwaters. Looking at artificial groundwater recharge, almost identical patterns were found in raw water and samples from gravel and sand filtration. DGGE patterns from the resulting groundwater indicated a total change in community structure during underground passage. By using group specific primers, Desulfovibrionaceae, Desulfobacteriaceae, and Archaea could be detected in anaerobic groundwaters.The molecularbiological approach described here gives an increasingly comprehensive and more precise picture of the microbial population of different environments. It is especially suitable to compare the community structure from different habitats or to analyse changes for example due to environmental stress at the same site.  相似文献   
5.
GC/MS Nontarget Analysis to Examine an Organic Groundwater Contamination. Part I: Sampling – Analysis – Identification GC/MS nontarget analysis is a combination of an extraction sequence and a GC/MS analysis without standards. The extraction sequence should enrich a wide range of organic substances with different chemical and physical properties. The GC/MS analysis without standards evaluates the total chromatogram whereas the possibilities of compound identification are limited. This kind of view is suited very well if the task of examinations are unknown organic contaminations and the conventional target analysis has to be expanded to a large number of compounds with the uncertainty of detecting the main contaminants. The extraction sequence is similar to the EPA 625 analysis of base/neutral and acid extractable organic compounds. Basis are liquid extraction and solid-phase extraction at different pH values. This extraction procedure covers approximately 30 % of total organic carbon of these groundwater samples from a contaminated area near a low temperature carbonization plant. Relevant groups of organic compounds analyzed in the contaminated groundwater or in the reference sample are substituted aromatics, phenols, benzoamines (anilines), and derivates of benzothiophene. Differences in the trace substance mixtures between the contaminated samples and the reference sample are demonstrated by applying modern graphical methods.  相似文献   
6.
Heavy metal polluted sites are bearing an acute hazardous risk for the groundwater, but also a potential one. While the acute risk can be assessed directly via seepage water measurements, determination of the potential risk is much more complex. It results from the sum of all reactions that are capable to mobilize heavy metals under worst case environ-mental conditions. Using a fourfold sequential extraction (SE4) such a worst case was simulated for four soils highly contaminated with Pb, Zn, and Cu. The resulting potential mobilizable amounts ϕpm have been compared with those derived from 6 single extractions. By means of variance analyses, it is shown that ϕpm of lead can be represented by a single extraction with NH2OH. In contrary, ϕpm of zinc can be represented using the pHstat test or an extraction with aqua regia, while ϕpm of copper can be represented only by aqua regia extraction. The water-soluble amounts deriving from the DEV-S4 test do not correlate with the potential mobilizable amounts of any metal. Therefore, an assessment of contaminated sites should include an aqua regia extraction additionally to the seepage water analysis.  相似文献   
7.
To ascertain the influence of hydrological boundary conditions on acidity fluxes in lakes influenced by acid mine drainage, acidity budgets were developed for two sediments in areas of differential groundwater inflow (approx. 1 L m?2 d?1 and 10 L m?2 d?1). In both sediments iron was deposited as schwertmannite leading to iron(III) enriched sediments (3.9…6.2 mmol g?1, referred to dry weight). Compared to the surface water, the inflowing groundwater had higher pH (4.5 vs. 3), ferrous iron (6…20 mmol L?1 vs. 0.8…2.0 mmol L?1), and sulfate (5…60 mmol L?1 vs. 8…13 mmol L?1) concentrations. The inflow changed the sediment pore water chemistry and triggered a further increase in pH to above 5.5. In both sediments acidity generation in the surface water (10…30 mol m?2 a?1) strongly prevailed over acidity consumption in the sediments (> ?0.6 mol m?2 a?1). With advective groundwater inflow, however, more acidity was consumed due to TRIS formation (?0.12 mol m?2 a?1 vs. ?0.017 mol m?2 a?1), iron carbonate burial (upper estimate: ?0.14 mol m?2 a?1 vs. ?0.022 mol m?2 a?1), and unspecific ferrous iron retention (?0.39 mol m?2 a?1 vs. ?0.08 mol m?2 a?1). Also, less acidity was generated due to schwertmannite transformation (?2.4 mol m?2 a?1 vs. ?0.11 mol m?2 a?1). The acidity balance of internal processes in the sediment with groundwater inflow was negative, whereas it was positive in the other sediment. The study demonstrates that in acidic and iron rich lakes the hydrological boundary conditions strongly affect geochemical processes as subsumed in acidity fluxes.  相似文献   
8.
Community Structures of Different Groundwater Habitats Investigated Using Methods of Molecular Biology The degradation of pollutants in groundwater and aquifers depends on microbiological and hydrogeochemical processes. To understand the transport and fate of anthropogenic compounds during bank filtration and artificial recharge of groundwater it is necessary to gain more information about the structure of microbial populations in these systems. The population structure of aerobic, anaerobic groundwater habitats and of water samples during artificial groundwater recharge was examined by 16S rDNA based analysis. Water and sediment samples were collected from a groundwater catchment area with artificial groundwater recharge near the river Ruhr in NW-Germany. 16S rRNA genes of mixed bacterial DNA from different samples were amplified by PCR (polymerase chain reaction) with eubacterial primer sequences. To reveal eubacterial population structure amplified PCR-products were separated by DGGE (denaturing gradient gel electrophoresis) on the basis of melting domain structure and nucleotide composition. DGGE patterns of groundwater enrichment cultures and groundwater samples were compared to demonstrate differences between the use of cultivation dependent and molecularbiological approaches. The DGGE pattern of groundwater is very complex and differs significantly from DGGE patterns of groundwater enrichment cultures characterized by a small number of distinct bands. This shows the small quantity of culturable microorganisms in groundwater eco-systems. Aerobic and anaerobic groundwater and sediment samples differ markedly in their DGGE profiles. Different hydrogeochemical zones of this groundwater catchment area are mirrowed by distinct DGGE patterns indicating changes in microbial community structure.Analysis of bacterial population structure in the course of artificial groundwater recharge shows identical DGGE patterns comparing surface water samples to samples taken be-fore gravel prefiltration and before sand filtration. In contrast the DGGE pattern of artificial recharged groundwater differs markedly, indicating significant changes in microbial population during underground passage.  相似文献   
9.
Distribution of Natural and Synthetic Estrogenic Steroid Hormones in Water Samples from Southern and Middle Germany Natural and synthetic hormones can reach surface waters via domestic sewage effluents. For drinking water production, bank filtration of river waters is a common procedure and hormone contaminations can potentially reach groundwater levels and drinking water sources. In order to analyse steroid hormones in the different aquatic compartments (raw sewage and effluent, surface water, groundwater, raw and drinking water) of South and Middle Germany, a sensitive analytical method was developed and employed to detect the natural steroid hormones estradiol (E2) and estrone and the synthetic estrogen ethinylestradiol (EE2). Samples which were taken in two subsequent series were subjected to clean‐up and enrichment procedure and subsequently analysed by HPLC‐MS. The limit of quantitation for the method was determined to be 0.05 to 0.5 ng/L, depending on the matrix. By treating the samples with glucuronidases/arylsulfatases, conjugates were amenable to analysis and the sum of conjugates and unconjugated steroids was calculated. In raw sewage, the median of the concentrations of the unconjugated steroids was 7 ng/L for EE2, 1.5 ng/L for E2, and 5.5 ng/L for estrone. After cleavage of conjugates, the medians of total steroids were 9.5 ng/L (EE2), 3 ng/L (E2), and 13 ng/l (estrone). Conjugates therefore contributed up to 50 % of the total steroid concentration in raw sewage. In treated effluents, the concentrations of steroids were much lower than in the raw sewage. The medians of free steroids were determined to be 0.3 ng/L for EE2, 0.2 ng/L for E2, and 2.5 ng/L for estrone. Overall the medians in the effluent were thus less than 10% of those in the influent. Conjugates still contributed significantly (40% and more) to the steroid concentrations (medians: EE2: 0.5 ng/L, E2: 0.8 ng/L, and estrone: 8 ng/L).  相似文献   
10.
Methane is produced under anaerobic conditions by metabolic processes in microbes and can occur in waters of the types anoxic‐anaerobic (RG 1/2) and anaerobic‐reduced (RG 2). If the concentration of methane lies below 0.2 mg/L, then no special treatment processes are required apart from dosing of oxygen and rapid sand filtration, which are performed to remove iron, manganese, and ammonium. The research results show that a higher concentration of methane must be specially treated. From the point of view of stable deferrisation, oxidation of up to 2 mg/L is tolerable in rapid sand filtration. However, an unusual increase in regrowth potential was observed. For this reason, the oxidation of methane should be reduced to 0.5 mg/L until further experiments yield results on the microbiological stability of treated water. Rapid sand filters for nitrification and demanganisation should have a maximum methane loading of 0.2 mg/L. The experiments show that nitrification first occurs at a methane concentration below 0.1 mg/L. During the working in of demanganisation, the inlet water should be free of methane. Therefore desorption is often required. If there is less than 1 mg/L to be degassed, then desorption can be achieved with overpressure in the oxidiser without any change in the carbonate‐bicarbonate equilibrium. With other systems, such as packed columns, wetted‐wall columns, or percolators, carbon dioxide is removed simultaneously. By means of the coefficients of similarity found, it was shown that methane and carbon dioxide desorb in different proportions depending on the system, and that the discharge of carbon dioxide can be reduced through a decrease in the air/water ratio.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号