首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2264篇
  免费   162篇
  国内免费   89篇
测绘学   111篇
大气科学   129篇
地球物理   617篇
地质学   1170篇
海洋学   107篇
天文学   179篇
综合类   36篇
自然地理   166篇
  2023年   14篇
  2022年   70篇
  2021年   79篇
  2020年   83篇
  2019年   90篇
  2018年   199篇
  2017年   167篇
  2016年   232篇
  2015年   99篇
  2014年   232篇
  2013年   225篇
  2012年   121篇
  2011年   134篇
  2010年   75篇
  2009年   93篇
  2008年   73篇
  2007年   58篇
  2006年   71篇
  2005年   42篇
  2004年   31篇
  2003年   38篇
  2002年   30篇
  2001年   28篇
  2000年   25篇
  1999年   15篇
  1998年   18篇
  1997年   7篇
  1996年   7篇
  1995年   14篇
  1994年   11篇
  1993年   9篇
  1992年   9篇
  1991年   4篇
  1990年   6篇
  1989年   5篇
  1988年   8篇
  1987年   7篇
  1986年   6篇
  1985年   7篇
  1984年   7篇
  1983年   10篇
  1982年   8篇
  1981年   9篇
  1978年   4篇
  1977年   4篇
  1975年   4篇
  1973年   3篇
  1972年   4篇
  1971年   4篇
  1968年   3篇
排序方式: 共有2515条查询结果,搜索用时 15 毫秒
1.
In order to model non‐Fickian transport behaviour in groundwater aquifers, various forms of the time–space fractional advection–dispersion equation have been developed and used by several researchers in the last decade. The solute transport in groundwater aquifers in fractional time–space takes place by means of an underlying groundwater flow field. However, the governing equations for such groundwater flow in fractional time–space are yet to be developed in a comprehensive framework. In this study, a finite difference numerical scheme based on Caputo fractional derivative is proposed to investigate the properties of a newly developed time–space fractional governing equations of transient groundwater flow in confined aquifers in terms of the time–space fractional mass conservation equation and the time–space fractional water flux equation. Here, we apply these time–space fractional governing equations numerically to transient groundwater flow in a confined aquifer for different boundary conditions to explore their behaviour in modelling groundwater flow in fractional time–space. The numerical results demonstrate that the proposed time–space fractional governing equation for groundwater flow in confined aquifers may provide a new perspective on modelling groundwater flow and on interpreting the dynamics of groundwater level fluctuations. Additionally, the numerical results may imply that the newly derived fractional groundwater governing equation may help explain the observed heavy‐tailed solute transport behaviour in groundwater flow by incorporating nonlocal or long‐range dependence of the underlying groundwater flow field.  相似文献   
2.
The best physical and geometrical parameters of the main sequence close visual binary system(CVBS), HIP 105947, are presented. These parameters have been constructed conclusively using Al-Wardat's complex method for analyzing CVBSs, which is a method for constructing a synthetic spectral energy distribution(SED) for the entire binary system using individual SEDs for each component star. The model atmospheres are in its turn built using the Kurucz(ATLAS9) line-blanketed plane-parallel models. At the same time, the orbital parameters for the system are calculated using Tokovinin's dynamical method for constructing the best orbits of an interferometric binary system. Moreover, the mass-sum of the components, as well as the ?θ and ?ρ residuals for the system, is introduced. The combination of Al-Wardat's and Tokovinin's methods yields the best estimations of the physical and geometrical parameters. The positions of the components in the system on the evolutionary tracks and isochrones are plotted and the formation and evolution of the system are discussed.  相似文献   
3.
A constitutive model that captures the material behavior under a wide range of loading conditions is essential for simulating complex boundary value problems. In recent years, some attempts have been made to develop constitutive models for finite element analysis using self‐learning simulation (SelfSim). Self‐learning simulation is an inverse analysis technique that extracts material behavior from some boundary measurements (eg, load and displacement). In the heart of the self‐learning framework is a neural network which is used to train and develop a constitutive model that represents the material behavior. It is generally known that neural networks suffer from a number of drawbacks. This paper utilizes evolutionary polynomial regression (EPR) in the framework of SelfSim within an automation process which is coded in Matlab environment. EPR is a hybrid data mining technique that uses a combination of a genetic algorithm and the least square method to search for mathematical equations to represent the behavior of a system. Two strategies of material modeling have been considered in the SelfSim‐based finite element analysis. These include a total stress‐strain strategy applied to analysis of a truss structure using synthetic measurement data and an incremental stress‐strain strategy applied to simulation of triaxial tests using experimental data. The results show that effective and accurate constitutive models can be developed from the proposed EPR‐based self‐learning finite element method. The EPR‐based self‐learning FEM can provide accurate predictions to engineering problems. The main advantages of using EPR over neural network are highlighted.  相似文献   
4.
The cosmological, astrophysical, and nucleocosmochronological methods for estimating the age of the universe and the corresponding uncertainties are comparatively studied in the present paper. We are led to the conclusion that the new measurements of cosmological parameters, and the recent estimates of the age of globular clusters have led to the gradual disappearance of the age problem from the arena of modern cosmology.  相似文献   
5.
Nonlinear Alfvén wave in a hot rotating and strongly magnetized electron-positron plasma is considered. Using relativistic two fluid equations, the dispersion relation for Alfvén wave in the rotating plasma is obtained. Large amplitude Alfvén solitons are found to exist in the rotating pulsar plasma. Rotational effects on solitons are discussed.  相似文献   
6.
7.
The Kali-Hindon inter-stream region extends over an area of 395 km2 within the Ganga-Yamuna interfluve. It is a fertile tract for sugarcane cultivation. Groundwater is a primary resource for irrigation and industrial purposes. In recent years, over-exploitation has resulted in an adverse impact on the groundwater regime. In this study, an attempt has been made to calculate a water balance for the Kali-Hindon inter-stream region. Various inflows and outflows to and from the aquifer have been calculated. The recharge due to rainfall and other recharge parameters such as horizontal inflow, irrigation return flow and canal seepage were also evaluated. Groundwater withdrawals, evaporation from the water table, discharge from the aquifer to rivers and horizontal subsurface outflows were also estimated. The results show that total recharge into the system is 148.72 million cubic metres (Mcum), whereas the total discharge is 161.06 Mcum, leaving a deficit balance of −12.34 Mcum. Similarly, the groundwater balance was evaluated for the successive four years. The result shows that the groundwater balance is highly sensitive to variation in rainfall followed by draft through pumpage. The depths to water level are shallow in the canal-irrigated northern part of the basin and deeper in the southern part. The pre-monsoon and post-monsoon water levels range from 4.6 to 17.7 m below ground level (bgl) and from 3.5 to 16.5 m bgl respectively. It is concluded that the groundwater may be pumped in the canal-irrigated northern part, while withdrawals may be restricted to the southern portion of the basin, where intense abstraction has led to rapidly falling water table levels.  相似文献   
8.
There is an increasing evidence for the involvement of pre-Neoproterozoic zircons in the Arabian–Nubian Shield, a Neoproterozoic crustal tract that is generally regarded to be juvenile. The source and significance of these xenocrystic zircons are not clear. In an effort to better understand this problem, older and younger granitoids from the Egyptian basement complex were analyzed for chemical composition, SHRIMP U–Pb zircon ages, and Sm–Nd isotopic compositions. Geochemically, the older granitoids are metaluminous and exhibit characteristics of I-type granites and most likely formed in a convergent margin (arc) tectonic environment. On the other hand, the younger granites are peraluminous and exhibit the characteristics of A-type granites; these are post-collisional granites. The U–Pb SHRIMP dating of zircons revealed the ages of magmatic crystallization as well as the presence of slightly older, presumably inherited zircon grains. The age determined for the older granodiorite is 652.5 ± 2.6 Ma, whereas the younger granitoids are 595–605 Ma. Xenocrystic zircons are found in most of the younger granitoid samples; the xenocrystic grains are all Neoproterozoic, but fall into three age ranges that correspond to the ages of other Eastern Desert igneous rocks, viz. 710–690, 675–650 and 635–610 Ma. The analyzed granitoids have (+3.8 to +6.5) and crystallization ages, which confirm previous indications that the Arabian–Nubian Shield is juvenile Neoproterozoic crust. These results nevertheless indicate that older Neoproterozoic crust contributed to the formation of especially the younger granite magmas.  相似文献   
9.
Karst aquifers represent important water resources in many parts of the world. Unfortunately, karst aquifers are characterised by high contamination risks. This paper presents a travel time based method for the estimation of karst groundwater vulnerability. It considers (1) physics-based lateral flow within the uppermost weathered zone (epikarst) in a limestone-dominated region and (2) high velocities of vertical infiltration at discrete infiltration points (e.g. sinkholes) or lines (e.g. dry valleys, faults). Consequently, the Transit Time Method honours the actual flow path within the unsaturated zone of a karst aquifer system. A test site in Northern Jordan was chosen for the demonstration of the assessment technique, i.e. the catchment area of the Qunayyah Spring north of the capital Amman. The results demonstrate that zones of highest vulnerability lie within valleys and nearby main fault zones. It also reveals that regions, categorised as protected areas by other methods due to thick unsaturated zones, contribute to a major degree to the total risk.  相似文献   
10.
This paper presents the results of a numerical performance analysis to demonstrate the worthiness of a recently patented new concept propulsor, the so-called “thrust-balanced propeller (TBP)”. The main advantage of this unconventional propulsor is its inherent ability to reduce the unsteady effect of blade forces and moments when it is operating in a non-uniform wake flow. The propulsor comprises a pair of diametrically opposed blades that are connected to one another and mounted so as to be rotatable together through a limited angle about their spindle axis. A quasi-hydrodynamic approach is described and applied to perform the numerical analysis using a state-of-the-art lifting surface procedure for conventional propellers. Performance comparisons with a conventional fixed-pitch propeller are made for the blade forces and moments, efficiency, cavitation extents and fluctuating hull pressures. Bearing in mind the quasi-static nature of the analyses, the results present favourable performance characteristics for the thrust-balanced propeller and support the worthiness of the concept. However, the concept needs to be proved through physical model tests, which are planned to take in a cavitation tunnel.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号