首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
地球物理   3篇
地质学   8篇
海洋学   3篇
自然地理   2篇
  2023年   1篇
  2015年   1篇
  2013年   1篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2006年   2篇
  2003年   2篇
  2002年   1篇
排序方式: 共有16条查询结果,搜索用时 359 毫秒
1.
Biomagnification     
Fisk AT  Hoekstra PF  Borgå K  Muir DC 《Marine pollution bulletin》2003,46(4):522-4; author reply 525-6
  相似文献   
2.
The Greenland Ice Core Chronology 2005, GICC05, is extended back to 42 ka b2k (before 2000 AD), i.e. to the end of Greenland Stadial 11. The chronology is based on independent multi-parameter counting of annual layers using comprehensive high-resolution measurements available from the North Greenland Ice Core Project, NGRIP. These are measurements of visual stratigraphy, conductivity of the solid ice, electrolytical melt water conductivity and the concentration of Na+, Ca2+, SO42−, NO3, NH4+. An uncertainty estimate of the time scale is obtained from identification of ‘uncertain’ annual layers, which are counted as 0.5±0.5 years. The sum of the uncertain annual layers, the so-called maximum counting error of the presented chronology ranges from 4% in the warm interstadial periods to 7% in the cold stadials. The annual accumulation rates of the stadials and interstadials are on average one-third and half of the present day values, respectively, and the onset of the Greenland Interstadials 2, 3, and 8, based on 20 year averaged δ18O values, are determined as 23,340, 27,780, and 38,220 yr b2k in GICC05.  相似文献   
3.
A high resolution study of early Holocene climate and palaeoceanography has been performed on two combined sediment cores from Malangenfjord, northern Norway. The fjord provides a regional oceanographic climatic signal reflecting changes in the North Atlantic heat flux at this latitude because of its deep sill and the relatively narrow adjoining continental shelf. Fauna and stable oxygen and carbon isotopes indicate cool, meltwater-depleted water masses in the fjord from 12000 to 11400 cal. yr BP followed by a warming between 11400-10300 cal. yr BP. The climatic variability can be explained partly by freshwater forcing hampering the North Atlantic heat conveyor, and partly by changing solar irradiance. A major cooling event at 11500-11400 cal. yr BP, followed by a rapid warming, is correlated to the Preboreal Oscillation, a widespread signal in the North Atlantic region which is probably linked to the increased meltwater flux to the northern North Atlantic at this time. Brief and small-scale cooling events between 10 300 and 10100 cal. yr BP, correlated to the onset of increased 10Be flux in the Greenland ice cores, suggest a response to solar forcing.  相似文献   
4.
Benthic foraminiferal shell geochemistry has been extensively used to develop paleoceanographic tracers. Many of these proxies are sensitive to the geochemical conditions of the microhabitats selected by particular foraminiferal species. Understanding these microhabitats, then, is essential for proper interpretation of the proxies. A simple, broadly accepted, view is that foraminiferal species’ habitats are vertically stratified in the sediments due to general pore-water chemical gradients, which develop in response to the seabed organic carbon flux. Species are categorized into epifaunal, shallow infaunal and deep infaunal habitats, and are supposed to acquire the geochemical characteristics of these. However, this view is at odds with species’ distributional data and foraminiferal geochemical properties. We present an alternate model in which foraminifera select for habitats within the bio-irrigation system of the sediments created by the activities of macro-/meio-fauna. Our distributional and geochemical data indicate that foraminiferal species seek particular biotic associations and geochemical conditions within the complex bio-architecture of the sediments and are not tied to particular sediment depths, or the general pore-water chemistry of their apparent habitation zone. Instead, foraminifera inhabit micro-environments with steep oxic to anoxic gradients. This might account for disparities among geochemical tracers.  相似文献   
5.
The origin of two acoustic sediment units has been studied based on lithological facies, chronology and benthic stable isotope values as well as on foraminifera and clay mineral assemblages in six marine sediment cores from Kveithola, a small trough west of Spitsbergenbanken on the western Barents Sea margin. We have identified four time slices with characteristic sedimentary environments. Before c. 14.2 cal. ka, rhythmically laminated muds indicate extensive sea ice cover in the area. From c. 13.9 to 14.2 cal. ka, muds rich in ice‐rafted debris were deposited during the disintegration of grounded ice on Spitsbergenbanken. From c. 10.3 to 13.1 cal. ka, sediments with heterogeneous lithologies suggest a shifting influence of suspension settling and iceberg rafting, probably derived from a decaying Barents Sea Ice Sheet in the inner‐fjord and land areas to the north of Kveithola. Holocene deposition was episodic and characterized by the deposition of calcareous sands and shell debris, indicative of strong bottom currents. We speculate that a marked erosional boundary at c. 8.2 cal. ka may have been caused by the Storegga tsunami. Whilst deposition was sparse during the Holocene, Kveithola acted as a sediment trap during the preceding deglaciation. Investigation of the deglacial sediments provides unprecedented details on the dynamics and timing of glacial retreat from Spitsbergenbanken.  相似文献   
6.
The frequency matching method defines a closed form expression for a complex prior that quantifies the higher order statistics of a proposed solution model to an inverse problem. While existing solution methods to inverse problems are capable of sampling the solution space while taking into account arbitrarily complex a priori information defined by sample algorithms, it is not possible to directly compute the maximum a posteriori model, as the prior probability of a solution model cannot be expressed. We demonstrate how the frequency matching method enables us to compute the maximum a posteriori solution model to an inverse problem by using a priori information based on multiple point statistics learned from training images. We demonstrate the applicability of the suggested method on a synthetic tomographic crosshole inverse problem.  相似文献   
7.
A 280 km wide sediment wedge in outer Bjørnøyrenna (Bear Island Trough), south-western Barents Sea, has been investigated using 2D and 3D seismic data, sediment gravity cores, as well as regional swath and large scale bathymetry data. The bathymetry data indicate a division into an up to 35 m high frontal wedge with large depressions, and an upstream part characterized by mega scale glacial lineations (MSGL). From seismic sections increasing erosion is demonstrated for the upstream part, coinciding with the location of MSGL. Whether the latter are depositional features postdating an extensive erosional event or formed by erosion remains inconclusive. Based on the distinct morphology and internal structures, we infer that the system was deposited during a rapid readvance whereby the ice front pushed and bulldozed predominantly soft, diluted proglacial sediments. Analyses in the eastern part of the sediment system reveal the existence of imbricated thrust sheets in the frontal part of the wedge. This is suggested to imply upstream erosion of sedimentary rock and incorporation of thrusted blocks into the moraine, forming a composite ridge locally. We argue that observed large scale depressions are dead-ice features in the marine environment. It is envisioned that intense englacial thrusting may have developed into a decollement as the cold glacier snout got overrun by ice masses from the interior, thereby enabling the inclusion of slabs of ice in the push moraine mass. Radiocarbon dates indicate that the sediment wedge was deposited around 17,090 cal yrs BP (14,530 14C yrs BP) and that the ice front probably remained stable until 16,580 cal yrs BP (13,835 14C yrs BP).  相似文献   
8.
This study describes a new type of pockmark association from the Lower Congo Basin offshore West Africa, consisting of up to 8 stacked paleopockmarks separated by intervals of drape and onlap fill. The stacked paleopockmarks occur within the depocentres of polygonally-faulted Plio-Pleistocene sediments and are distributed evenly in the downslope parts of two salt mini-basins. The majority of the stacked pockmarks initiated synchronously in the late Pliocene (~ 3 Ma) with a subordinate initiation phase in the mid Pliocene (~ 4 Ma). The primary agents in pockmark formation are interpreted to be pore water expelled during early-stage compaction together with biogenic methane. Bottom simulating reflections (BSRs) associated with free gas overlain by gas hydrates are currently found in the area. It is speculated that biogenic methane accumulated within and below a clathrate cap, which was repeatedly breached, forming pockmarks at discrete horizons separated by intervals of draping sedimentation. The mid and late Pliocene pockmark initiations appear to coincide with sea-level falls following periods of relatively stable highstand conditions. Several subsequent pockmark horizons may similarly correlate with subsequent sea-level falls during the late Pliocene and early Pleistocene. The stacked paleopockmarks are completely surrounded by polygonal faults and consistently occur within polygonal fault cells that crosscut the succession containing the stacked pockmarks. Early-stage compaction and dewatering of the Pliocene sediments thus preceded polygonal faulting, providing a constraint on the conditions leading to polygonal faulting of the fine-grained host sediments. The relationship documented here is interpreted as due to the presence of a hydrate cap in the Plio-Pleistocene mini-basins which may have retarded the normal compaction processes and facilitated pockmark formation by allowing the build up of gas hydrate and free gas in the basin centres. The relative timing and spatial relationships implies that fluids expelled due to polygonal faulting were not implicated in pockmark formation in this area.  相似文献   
9.
Automated electron backscattered diffraction (EBSD) was applied using a scanning electron microscope to obtain lattice preferred orientation (LPO) data for olivine in garnet peridotites of the Central Alps. As a reference frame, the LPOs of enstatite were also investigated. In the garnet peridotite at Cima di Gagnone (CDG), a weak foliation carrying a distinct lineation is present. The lineation is characterized by elongated enstatite, olivine and poikiloblastic garnet. Olivine shows a very unusual LPO with [100] normal to foliation and [001] parallel to lineation. Achsenverteilungsanalyse (AVA) maps demonstrate that [001] of olivine grains corresponds quite well to their maximum length axes which are preferentially parallel to the lineation. Numerous planar hydrous defects within (001) planes of olivine are marked by palisades of ilmenite rods and show a preferred orientation normal to lineation. Calculated P-wave velocities for CDG are fastest (8.32 km sу) normal to foliation with a relatively low anisotropy (2.9%). Compared to mantle peridotites with the usual (010)[100] LPO where the fastest Vp direction is towards the lineation, the relationship between flow geometry and seismic anisotropy is significantly different at CDG. Several mechanisms for the formation of the LPO type at CDG are considered, with glide possible on (100)[001] of olivine. On the basis of field data as well as petrographic and petrologic evidence, it has been demonstrated that the CDG garnet peridotite formed by prograde metamorphism from a hydrous protolith at pressures and temperatures of about 3.0 GPa and 750 °C, respectively. The CDG LPO is interpreted to have formed during hydrous subduction zone metamorphism. The same interpretation may hold for the previously investigated olivine LPO at Alpe Arami, which is similar to that at the nearby CDG. The observed anomalous LPO is no proof for ultradeep (>3.0 GPa) conditions.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号