首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   3篇
  国内免费   3篇
测绘学   1篇
大气科学   9篇
地球物理   5篇
地质学   23篇
海洋学   7篇
天文学   15篇
自然地理   2篇
  2022年   3篇
  2021年   3篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2015年   3篇
  2014年   2篇
  2013年   1篇
  2012年   5篇
  2011年   3篇
  2010年   8篇
  2009年   3篇
  2008年   4篇
  2007年   4篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1991年   1篇
  1987年   1篇
  1980年   1篇
排序方式: 共有62条查询结果,搜索用时 19 毫秒
1.
In view of rapid developments in iterative solvers, it is timely to re‐examine the merits of using mixed formulation for incompressible problems. This paper presents extensive numerical studies to compare the accuracy of undrained solutions resulting from the standard displacement formulation with a penalty term and the two‐field mixed formulation. The standard displacement and two‐field mixed formulations are solved using both direct and iterative approaches to assess if it is cost‐effective to achieve more accurate solutions. Numerical studies of a simple footing problem show that the mixed formulation is able to solve the incompressible problem ‘exactly’, does not create pressure and stress instabilities, and obviate the need for an ad hoc penalty number. In addition, for large‐scale problems where it is not possible to perform direct solutions entirely within available random access memory, it turns out that the larger system of equations from mixed formulation also can be solved much more efficiently than the smaller system of equations arising from standard formulation by using the symmetric quasi‐minimal residual (SQMR) method with the generalized Jacobi (GJ) preconditioner. Iterative solution by SQMR with GJ preconditioning also is more elegant, faster, and more accurate than the popular Uzawa method. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
2.
River flooding is a problem of international interest. In the past few years many countries suffered from severe floods. A large part of the Netherlands is below sea level and river levels. The Dutch flood defences along the river Rhine are designed for water levels with a probability of exceedance of 1/1250 per year. These water levels are computed with a hydrodynamic model using a deterministic bed level and a deterministic design discharge. Traditionally, the safety against flooding in the Netherlands is obtained by building and reinforcing dikes. Recently, a new policy was proposed to cope with increasing design discharges in the Rhine and Meuse rivers. This policy is known as the Room for the River (RfR) policy, in which a reduction of flood levels is achieved by measures creating space for the river, such as dike replacement, side channels and floodplain lowering. As compared with dike reinforcement, these measures may have a stronger impact on flow and sediment transport fields, probably leading to stronger morphological effects. As a result of the latter the flood conveyance capacity may decrease over time. An a priori judgement of safety against flooding on the basis of an increased conveyance capacity of the river can be quite misleading. Therefore, the determination of design water levels using a fixed-bed hydrodynamic model may not be justified and the use of a mobile-bed approach may be more appropriate. This problem is addressed in this paper, using a case study of the river Waal (one of the Rhine branches in the Netherlands). The morphological response of the river Waal to a flood protection measure (floodplain lowering in combination with summer levee removal) is analysed. The effect of this measure is subject to various sources of uncertainty. Monte Carlo simulations are applied to calculate the impact of uncertainties in the river discharge on the bed levels. The impact of the “uncertain” morphological response on design flood level predictions is analysed for three phenomena, viz. the impact of the spatial morphological variation over years, the impact of the seasonal morphological variation and the impact of the morphological variability around bifurcation points. The impact of seasonal morphological variations turns out to be negligible, but the other two phenomena appear to have each an appreciable impact (order of magnitude 0.05–0.1 m) on the computed design water levels. We have to note however, that other sources of uncertainty (e.g. uncertainty in hydraulic roughness predictor), which may be of influence, are not taken into consideration. In fact, the present investigation is limited to the sensitivity of the design water levels to uncertainties in the predicted bed level.  相似文献   
3.
We have compiled 19 records from marine carbonate cores in which the Matuyama-Brunhes boundary (MBB) has been reasonably well constrained within the astronomically forced stratigraphic framework using oxygen isotopes. By correlation of the δ18O data to a timescale based on astronomical forcing, we estimate astronomical ages for each of the MBB horizons. In all but one record the MBB occurs within Stage 19.

Most magnetostratigraphic sections in Asian Loess place the MBB within a loess interval. Since loess deposition is presumed to be associated with glacial intervals, loess horizons should correspond to even-numbered oxygen isotope stages. A glacial age for the MBB is at odds with the results presented here, which firmly place the MBB within interglacial Stage 19. Inconsistency among the many loess sections and between the loess and the marine records suggests that the magnetic interpretation of loess sections may be more complicated than hitherto supposed.

The mean of the Stage 19 age estimates for the MBB is 777.9 ± 1.8 (N = 18). Inclusion of the single Stage 20 age results in a mean of 778.8 ± 2.5 (N = 19). The astronomical age estimate of the MBB compares favorably with an (unweighted) mean of 778.2 ± 3.5 (N = 10) from a compilation of 40Ar/39Ar results of transitional lava flows. Combining the two independent data sets yields a grand mean of 778.0 ± 1.7 (N = 28).

The new compilation shows virtually no trend in placement of the MBB within isotope Stage 19 as a function of sediment accumulation rate. We interpret this to mean that the average depth of remanence acquisition is within a few centimeters of the sediment-water interface.

Separating the cores into two geographic regions (an Indo-Pacific-Caribbean [IPC] Group and an Atlantic Group) results in a significant difference in the position of the mid-point of the reversal with respect to the astronomical time scale. The data presented here suggest a difference of several thousand years between the two regions. This observation could be caused by systematic differences between the two regions in sedimentation rate within the interval of interest, systematic differences in remanence acquisition, or by genuine differences in the timing of the directional changes between the two regions.  相似文献   

4.
To understand more fully the mode of preservation of organic matter in marine sediments, laboratory sulfurisation of intact cells of the cultured microalga Nannochloropsis salina was performed using inorganic polysulfides in seawater at 50°C. Solvent extractable and non-extractable materials were analysed by GC–MS and Py–GC–MS, respectively, to study the incorporation of sulfur into the microalgal organic matter. No GC-amenable sulfur-containing compounds were found in the extracts apart from some minor thiophenes with a phytanyl carbon skeleton. The residue after extraction and hydrolysis contained abundant macromolecular sulfur-containing moieties as revealed by the presence of dominant C28–C32 thiols, thiophenes, thianes and thiolanes in the flash pyrolysates. These products are thought to be formed from moieties derived from sulfurisation of C28–C32 diols and alkenols, characteristic lipids of N. salina. C1–C2 alkylated thiophenes were also found in the pyrolysates and probably result from moieties formed upon sulfurisation of carbohydrates. The highly resistant biomacromolecule (algaenan) synthesised by N. salina remains unaffected by sulfurisation. The non-hydrolysable residue isolated from the sulfurised N. salina thus comprises algaenan and (poly)sulfide-bound long alkyl chains. The sulfurisation experiments show that both selective preservation of algaenans and lipid and carbohydrate “vulcanisation” can be involved in the preservation of algal organic matter in marine environments.  相似文献   
5.
6.
We have analyzed the continuum emission of limb spectra acquired by the Cassini/CIRS infrared spectrometer in order to derive information on haze extinction in the 3–0.02 mbar range (∼150–350 km). We focused on the 600–1420 cm−1 spectral range and studied nine different limb observations acquired during the Cassini nominal mission at 55°S, 20°S, 5°N, 30°N, 40°N, 45°N, 55°N, 70°N and 80°N. By means of an inversion algorithm solving the radiative transfer equation, we derived the vertical profiles of haze extinction coefficients from 17 spectral ranges of 20-cm−1 wide at each of the nine latitudes. At a given latitude, all extinction vertical profiles retrieved from various spectral intervals between 600 and 1120 cm−1 display similar vertical slopes implying similar spectral characteristics of the material at all altitudes. We calculated a mean vertical extinction profile for each latitude and derived the ratio of the haze scale height (Hhaze) to the pressure scale height (Hgas) as a function of altitude. We inferred Hhaze/Hgas values varying from 0.8 to 2.4. The aerosol scale height varies with altitude and also with latitude. Overall, the haze extinction does not show strong latitudinal variations but, at 1 mbar, an increase by a factor of 1.5 is observed at the north pole compared to high southern latitudes. The vertical optical depths at 0.5 and 1.7 mbar increase from 55°S to 5°N, remain constant between 5°N and 30°N and display little variation at higher latitudes, except the presence of a slight local maximum at 45°N. The spectral dependence of the haze vertical optical depth is uniform with latitude and displays three main spectral features centered at 630 cm−1, 745 cm−1 and 1390 cm−1, the latter showing a wide tail extending down to ∼1000 cm−1. From 600 to 750 cm−1, the optical depth increases by a factor of 3 in contrast with the absorbance of laboratory tholins, which is generally constant. We derived the mass mixing ratio profiles of haze at the nine latitudes. Below the 0.4-mbar level all mass mixing ratio profiles increase with height. Above this pressure level, the profiles at 40°N, 45°N, 55°N, at the edge of the polar vortex, display a decrease-with-height whereas the other profiles increase. The global increase with height of the haze mass mixing ratio suggest a source at high altitudes and a sink at low altitudes. An enrichment of haze is observed at 0.1 mbar around the equator, which could be due to a more efficient photochemistry because of the strongest insolation there or an accumulation of haze due to a balance between sedimentation and upward vertical drag.  相似文献   
7.
This paper discusses the role and relevance of the shared socioeconomic pathways (SSPs) and the new scenarios that combine SSPs with representative concentration pathways (RCPs) for climate change impacts, adaptation, and vulnerability (IAV) research. It first provides an overview of uses of social–environmental scenarios in IAV studies and identifies the main shortcomings of earlier such scenarios. Second, the paper elaborates on two aspects of the SSPs and new scenarios that would improve their usefulness for IAV studies compared to earlier scenario sets: (i) enhancing their applicability while retaining coherence across spatial scales, and (ii) adding indicators of importance for projecting vulnerability. The paper therefore presents an agenda for future research, recommending that SSPs incorporate not only the standard variables of population and gross domestic product, but also indicators such as income distribution, spatial population, human health and governance.  相似文献   
8.
9.
We have investigated the abundances of Titan's stratospheric oxygen compounds using 0.5 cm−1 resolution spectra from the Composite Infrared Spectrometer on the Cassini orbiter. The CO abundance was derived for several observations of far-infrared nadir spectra, taken at a range of latitudes (75° S-35° N) and emission angles (0°-60°), using rotational lines that have not been analysed before the arrival of Cassini at Saturn. The derived volume mixing ratios for the different observations are mutually consistent regardless of latitude. The weighted mean CO volume mixing ratio is 47±8 ppm if CO is assumed to be uniform with latitude. H2O could not be detected and an upper limit of 0.9 ppb was determined. CO2 abundances derived from mid-infrared nadir spectra show no significant latitudinal variations, with typical values of 16±2 ppb. Mid-infrared limb spectra at 55° S were used to constrain the vertical profile of CO2 for the first time. A vertical CO2 profile that is constant above the condensation level at a volume mixing ratio of 15 ppb reproduces the limb spectra very well below 200 km. This is consistent with the long chemical lifetime of CO2 in Titan's stratosphere. Above 200 km the CO2 volume mixing ratio is not well constrained and an increase with altitude cannot be ruled out there.  相似文献   
10.
Zhang  Jin-Zhang  Zhang  Dong-Ming  Huang  Hong-Wei  Phoon  Kok Kwang  Tang  Chong  Li  Gang 《Acta Geotechnica》2022,17(4):1129-1145
Acta Geotechnica - The scale of fluctuation (SOF) is the critical parameter to describe the soil spatial variability, which significantly influences the embedded geostructures. Due to the limited...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号