首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   156篇
  免费   5篇
  国内免费   2篇
测绘学   6篇
大气科学   42篇
地球物理   13篇
地质学   76篇
海洋学   2篇
天文学   23篇
自然地理   1篇
  2023年   1篇
  2022年   3篇
  2021年   2篇
  2020年   4篇
  2019年   3篇
  2018年   8篇
  2017年   14篇
  2016年   8篇
  2015年   12篇
  2014年   11篇
  2013年   17篇
  2012年   5篇
  2011年   7篇
  2010年   4篇
  2009年   7篇
  2007年   4篇
  2006年   4篇
  2005年   3篇
  2004年   1篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  1998年   6篇
  1997年   1篇
  1996年   4篇
  1995年   1篇
  1994年   3篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1988年   1篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1981年   5篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1975年   2篇
  1973年   2篇
排序方式: 共有163条查询结果,搜索用时 853 毫秒
1.
 The mean state of the tropical atmosphere is important as the nature of the coupling between the ocean and the atmosphere depends nonlinearly on the basic state of the coupled system. The simulation of the annual cycle of the tropical surface wind stress by 17 atmospheric general circulation models (AGCMs) is examined and intercompared. The models considered were part of the Atmospheric Model Intercomparison Project (AMIP) and were integrated with observed sea surface temperature (SST) for the decade 1979–1988. Several measures have been devised to intercompare the performance of the 17 models on global tropical as well as regional scales. Within the limits of observational uncertainties, the models under examination simulate realistic tropical area-averaged zonal and meridional annual mean stresses. This is a noteworthy improvement over older generation low resolution models which were noted for their simulation of surface stresses considerably weaker than the observations. The models also simulate realistic magnitudes of the spatial distribution of the annual mean surface stress field and are seen to reproduce realistically its observed spatial pattern. Similar features are observed in the simulations of the annual variance field. The models perform well over almost all the tropical regions apart from a few. Of these, the simulations over Somali are interesting. Over this region, the models are seen to underestimate the annual mean zonal and meridional stresses. There is also wide variance between the different models in simulating these quantities. Large model-to-model variations were also seen in the simulations of the annual mean meridional stress field over equatorial Indian Ocean, south central Pacific, north east Pacific and equatorial eastern Pacific oceans. It is shown that the systematic errors in simulating the surface winds are related to the systematic errors in simulating the Inter-Tropical Convergence Zone (ITCZ) in its location and intensity. Weaker than observed annual mean southwesterlies simulated by most models over Somali is due to weaker than observed southwesterlies during the Northern Hemisphere summer. This is related to the weaker than observed land precipitation simulated by most models during the Northern Hemisphere summer. The diversity in simulation of the surface wind over Somali and equatorial Indian ocean is related to the diversity of AGCMs in simulating the precipitation zones in these regions. Received: 2 August 1996 / Accepted: 7 February 1997  相似文献   
2.
We present some preliminary results from a multi-layer soil temperature finite-difference model using the data set obtained during the pilot experiment on land surface processes at Anand. We hope that the present results will prove useful during the final field experiments scheduled for the coming monsoon season.  相似文献   
3.
The textural and chemical evolution of allanite and monazite along a well‐constrained prograde metamorphic suite in the High Himalayan Crystalline of Zanskar was investigated to determine the P–T conditions for the crystallization of these two REE accessory phases. The results of this study reveals that: (i) allanite is the stable REE accessory phase in the biotite and garnet zone and (ii) allanite disappears at the staurolite‐in isograd, simultaneously with the occurrence of the first metamorphic monazite. Both monazite and allanite occur as inclusions in staurolite, indicating that the breakdown of allanite and the formation of monazite proceeded during staurolite crystallization. Staurolite growth modelling indicates that staurolite crystallized between 580 and 610 °C, thus setting the lower temperature limit for the monazite‐forming reaction at ~600 °C. Preservation of allanite and monazite inclusions in garnet (core and rim) constrains the garnet molar composition when the first monazite was overgrown and subsequently encompassed by the garnet crystallization front. Garnet growth modelling and the intersection of isopleths reveal that the monazite closest to the garnet core was overgrown by the garnet advancing crystallization front at 590 °C, which establishes an upper temperature limit for monazite crystallization. Significantly, the substitution of allanite by monazite occurs in close spatial proximity, i.e. at similar P–T conditions, in all rock types investigated, from Al‐rich metapelites to more psammitic metasedimentary rocks. This indicates that major silicate phases, such as staurolite and garnet, do not play a significant role in the monazite‐forming reaction. Our data show that the occurrence of the first metamorphic monazite in these rocks was mainly determined by the P–T conditions, not by bulk chemical composition. In Barrovian terranes, dating prograde monazite in metapelites thus means constraining the time when these rocks reached the 600 °C isotherm.  相似文献   
4.
5.
6.
Having recognized that it is the tropospheric temperature (TT) gradient rather than the land–ocean surface temperature gradient that drives the Indian monsoon, a new mechanism of El Niño/Southern Oscillation (ENSO) monsoon teleconnection has been unveiled in which the ENSO influences the Indian monsoon by modifying the TT gradient over the region. Here we show that equatorial Pacific coralline oxygen isotopes reflect TT gradient variability over the Indian monsoon region and are strongly correlated to monsoon precipitation as well as to the length of the rainy season. Using these relationships we have been able to reconstruct past Indian monsoon rainfall variability of the first half of the 20th century in agreement with the instrumental record. Additionally, an older coral oxygen isotope record has been used to reconstruct seasonally resolved summer monsoon rainfall variability of the latter half of the 17th century, indicating that the average annual rainfall during this period was similar to that during the 20th century. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
7.
The stability of a simple coupled ocean-atmosphere system similar to the one studied by Hirst with general ocean thermodynamics is investigated in which the atmospheric heating is determined by sea surface temperature anomalies as well as the convergence feedback (low level moisture convergence by the waves themselves). It is shown that the unstable coupled mode found by Hirst (UH mode) is profoundly modified by the convergence feedback. The feedback increases the unstable range of the UH mode and can increase its growth rate several folds. The maximally growing UH mode can become westward propagating for certain strength of convergence feedback. If the convergence feedback strength exceeds a critical value, several new unstable intraseasonal modes are also introduced. These modes are basically ‘advective’ modes. For relatively weak strengths of the convergence feedback the growth rates of these modes are smaller than that of the UH mode. As the atmosphere approaches ‘moist neutral’ state, the growth rates of these modes could become comparable or even larger than that of the UH mode. It is argued that these results explain why the El Nino and Southern Oscillation (ENSO) signal is clear in the eastern Pacific but not so in the western Pacific and they may also explain some of the differences between individual ENSO events. Our results also explain the aperiodic behaviour of some coupled numerical models. Importance of this process in explaining the observed aperiodicity of the ENSO phenomenon is indicated.  相似文献   
8.
The Burhi Dining river flows in a meandering course for about 220 km through alluvial plains of Assam including a short rocky and hilly tract in between. Sequential changes in the position of banklines of the river due to consistent bank erosion have been studied from Survey of India topographic maps of 1934 and 1972, and digital satellite data of 2001 and 2004 using GIS. Two broad kinds of changes have been observed, e.g. alteration of direction of flow due to neck cut-off and progressive gradual change of the meander bends that accounts for translational, lateral, rotational, extensional and other types of movement of the meander bends. Study of bankline shift due to the bank erosion has been carried out for the periods 1934–1972, 1972–2001, 2001–2004 and 1934–2004 at 13 segments spaced at 5′ longitude interval (average 15 km) as the river course trends nearly east to west. The amounts of the bank area lost due to erosion and gained due to sediment deposition are estimated separately. The total area eroded in both banks during 1934–1972 was more (26.796 km2) as compared to sediment deposition (19.273 km2), whereas total sediment deposition was more (34.61 km2) during 1972-2001 as compared to erosion (23.152 km2). Erosion was again more in 2001–2004 (7.568 km2) as compared to sediment deposition (2.493 km2). During the entire period (1934–2004) of study the overall erosion on the both banks was 31.169 km2 and overall sediment deposition was 30.101 km2. The highest annual rates of bank erosion as well as bank building of the river are 21055.47 m2/km in 2001–2004 and 9665.81 m2/km in 1972-2001, respectively. Similarly the highest average annual rates of erosion as well as sediment deposition in both banks are observed during 2001–2004 and 1972–2001, respectively. The hard rocks of the hilly tract situated in between result in development of entrenched meandering and this tract has suffered minimum bank erosion.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号