首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  国内免费   3篇
地质学   14篇
  2019年   3篇
  2012年   1篇
  2011年   1篇
  2008年   8篇
  2004年   1篇
排序方式: 共有14条查询结果,搜索用时 343 毫秒
1.
The importance or otherwise of rice as an exposure pathway for As ingestion by people living in Bengal and other areas impacted by hazardous As-bearing groundwaters is currently a matter of some debate. Here this issue is addressed by determining the overall increased cancer risk due to ingestion of rice in an As-impacted district of West Bengal. Human target cancer health risks have been estimated through the intake of As-bearing rice by using combined field, laboratory and computational methods. Monte Carlo simulations were run following fitting of model probability curves to measured distributions of (i) As concentration in rice and drinking water and (ii) inorganic As content of rice and fitting distributions to published data on (i) ingestion rates and (ii) body weight and point estimates on bioconcentration factors, exposure duration and other input variables. The distribution of As in drinking water was found to be substantially lower than that reported by previous authors for As in tube wells in the same area, indicating that the use of tube well water as a proxy for drinking water is likely to result in human health risks being somewhat overestimated. The calculated median increased lifetime cancer risk due to cooked rice intake was 7.62 × 10−4, higher than the 10−4–10−6 range typically used by the USEPA as a threshold to guide determination of regulatory values and similar to the equivalent risk from water intake. The median total risk from combined rice and water intake was 1.48 × 10−3. The contributions to this median risk from drinking water, rice and cooking of rice were found to be 48%, 44% and 8%, respectively. Thus, rice is a major potential source of As exposure in the As-affected study areas in West Bengal and the most important exposure pathway for groups exposed to low or no As in drinking water.  相似文献   
2.
Helium trapped in arsenopyrite and wolframite from the Panasqueira hydrothermal deposit in central Portugal is overwhelmingly—≈ 75%—derived from the mantle. This is surprising as the W-Cu(Ag)-Sn vein deposits are spatially and temporally associated with an S-type granite. It is difficult to reconcile 3He/4He ratios > 5Ra (where Ra is the atmospheric 3He/4He ratio) with a granite produced by crustal anatexis, therefore it seems likely that mantle derived fluids unrelated to the granite were the source of the magmatic component in the ore fluids.The mantle appears to transport 3He and heat to the surface in relatively constant proportions (3He/Q = 0.1-1 x10−12 cm3 STP J−1). However, the 3He/heat ratios in the Panasqueira fluids (1-10 x10−12 cm3 STP J−1, calculated using the 3He/36Ar ratio) are considerably higher. Therefore, it does not seem likely that gradual cooling of the pluton supplied heat to the hydrothermal system (as this would result in low 3He/Q ratios). Therefore, both He and heat in this collision related, granite-associated hydrothermal deposit were supplied from the mantle.  相似文献   
3.
High concentrations of geogenic As in the groundwaters of south and SE Asia, which are used as drinking waters, are causing severe health impacts to the exposed human populations. It is widely accepted that As mobilisation from sediments into these shallow reducing groundwaters requires active metal-reducing microbes and electron donors such as organic matter (OM). Although OM in such Holocene aquifers has been characterised, there is a dearth of data on Pleistocene aquifers from the same areas. Reported here are preliminary studies of OM and microbial communities present in two aquifers, one of Pleistocene and one of Holocene age, with contrasting concentrations of As (viz. Pleistocene: low As <10 μg/L; Holocene: high As up to 600 μg/L) from Van Phuc village in the Red River Delta, Vietnam. Results revealed OM inputs from multiple sources, including potential contributions from naturally occurring petroleum seeping into the shallow aquifer sediments from deeper thermally mature source rocks. Although concentrations vary, no noticeable systematic differences in biomarker distribution patterns within the OM were observed between the two sites. Microbial analyses did not show a presence of microbial communities previously associated with As mobilisation. All clone libraries were dominated by α-, β-, and γ-Proteobacteria not known to be able to reduce Fe(III) or sorbed As(V). Furthermore, representatives of the Fe(III)-reducing genus Geobacter could only be detected at very low abundance by PCR, using highly selective 16S rRNA gene primers, supporting the hypothesis that metal reduction is not a dominant in situ process in these sediments. No correlation between As concentration in groundwater and OM composition nor microbial community in the host sediments was found. This suggests that either (i) As is not being significantly mobilised in situ in these sediments, instead As appears to be mobilised elsewhere and transported by groundwater flow to the sites or (ii) sorption/desorption processes, as implicated by geochemical data from the cores, play a critical role in controlling As concentrations at these sites.  相似文献   
4.
Fluvial dissolved Fe concentrations decrease upon mixing with seawater, resulting in the formation of Fe-floccules. However, a clear understanding of the fate of these floccules has yet to be established. Assessing how tidal processes affect the formation of Fe-colloids in the Leirárvogur estuary, SW Iceland, is an important step in understanding the formation and potential deposition of estuarine Fe-rich minerals within this estuarine system. The Leirárvogur estuary drains predominately Fe-rich basalt, increasing the likelihood of detecting changes in Fe-phases. Fluvial waters and local lake waters that drain into the estuary were compared and the effects of seasonal changes were considered, in an attempt to understand how varying end-members and external factors play a role in Fe-rich mineral formation. Aqueous and colloidal Fe concentrations were found to be greater towards the head of the Leirárvogur estuary, suggesting that potential Fe-rich minerals and complexes are forming at sites of fluvial input. Increasing suspended colloidal Fe towards the estuary mouth suggests that Fe-colloids are readily transported seaward.  相似文献   
5.
Natural arsenic(As)contamination of groundwater which provides drinking water and/or irrigation supplies remains a major public health issue,particularly in South and Southeast Asia.A number of studies have evaluated various aspects of the biogeochemical controls on As mobilization in aquifers typical to this region,however many are predicated on the assumption that key biogeochemical processes may be deduced by sampled water chemistry.The validity of this assumption has not been clearly established even though the role of sorption/desorption of As and other heavy metals onto Fe/Mn(hydr)oxides is an important control in As mobilization.Here,selective chemical extractions of sand-rich and clay-rich sediments from an As-affected aquifer in Kandal Province,Cambodia,were undertaken to explore the potential role of partial re-equilibrium through sorption/desorption reactions of As and related solutes(Fe,Mn and P)between groundwater and the associated solid aquifer matrix.In general,groundwater As is strongly affected by both pH and Eh throughout the study area.However,contrasting sorption behaviour is observed in two distinct sand-dominated(T-Sand)and clay dominated(T-Clay)transects,and plausibly attributed to differing dominant lithologies,biogeochemical and/or hydrogeological conditions.Sorption/desorption processes appear to be re-setting groundwater As concentrations in both transects,but to varying extents and in different ways.In T-Sand,which is typically highly reducing,correlations suggest that dissolved As may be sequestered by sorption/re-adsorption to Fe-bearing mineral phases and/or sedimentary organic matter;in T-Clay Eh is a major control on As mobilization although binding/occlusion of Fe-bearing minerals to sedimentary organic matter may also occur.Multiple linear regression analysis was conducted with groups categorised by transect and by Eh,and the output correlations support the contrasting sorption behaviours encountered in this study area.Irrespective of transect,however,the key biogeochemical processes which initially control As mobilization in such aquifers,may be "masked" by the re-setting of As concentrations through in-aquifer sorption/desorption processes.  相似文献   
6.
7.
Organic matter in the environment is involved in many biogeochemical processes,including the mobilization of geogenic trace elements,such as arsenic,into groundwater.In this paper we present the use of fluorescence spectroscopy to characterize the dissolved organic matter(DOM)pool in heavily arsenicaffected groundwaters in Kandal Province,Cambodia.The fluorescence DOM(fDOM)characteristics between contrasting field areas of differing dominant lithologies were compared and linked to other hydrogeochemical parameters,including arsenic and dissolved methane as well as selected sedimentary characteristics.Absorbance-corrected fluorescence indices were used to characterize depth profiles and compare field areas.Groundwater fDOM was generally dominated by terrestrial humic and fulvic-like components,with relatively small contributions from microbially-derived,tryptophan-like components.Groundwater fDOM from sand-dominated sequences typically contained lower tryptophan-like,lower fulvic-like and lower humic-like components,was less bioavailable,and had higher humification index than clay-dominated sequences.Methane concentrations were strongly correlated with fDOM bioavailability as well as with tryptophan-like components,suggesting that groundwater methane in these arsenic-prone aquifers is likely of biogenic origin.A comparison of fDOM tracers with sedimentary OM tracers is consistent with the hypothesis that external,surface-derived contributions to the aqueous DOM pool are an important control on groundwater hydrogeochemistry.  相似文献   
8.
The presence of elevated As in ground waters exploited for drinking water and irrigation in South-East Asia is causing serious impacts on human health. A key mechanism that causes the mobilization of As in these waters is microbially mediated reductive transformation of As-bearing Fe(III) hydrated oxides and the role of degradable organic matter (OM) in this process is widely recognized. A number of different types of OM that drive As release in these aquifers have been suggested, including petroleum derived hydrocarbons naturally seeping into shallow sediments from deeper thermally mature source rocks. However, the amount of information on the characteristics of the OM in South-East Asian aquifers is limited. Here the organic geochemical analyses of the saturated hydrocarbon fractions and radiocarbon analysis, of two additional sites in SE Asia are reported. The results show that the OM in a given sedimentary horizon likely derives from multiple sources including naturally occurring petroleum. The importance of naturally occurring petroleum as one of the sources was clearly indicated by the n-alkane CPI of approximately 1, the presence of an unresolved complex mixture, and hopane (dominated by 17α(H),21β(H) hopanes) and sterane distribution patterns. The results also indicate that the OM in these aquifers varies tremendously in content, character and potential bioavailability. Furthermore, the presence of petroleum derived OM in sediments at both sites doubles the number of locations where their presence has been observed in association with As-rich, shallow aquifers, suggesting that the role of petroleum derived OM in microbially mediated As release might occur over a wider range of geographical locations than previously thought.  相似文献   
9.
10.
Calculation of excess disease burden for As exposed populations is becoming increasingly important to enable quantitative estimation of the impacts of various As mitigation options. There are several methods by which such calculations may be carried out. In this study, two methods, recently applied to estimating groundwater As-related health risks in southern Asia, to estimate disease burden arising from lung, bladder and liver cancer from As exposure for an As-effected area of West Bengal have been compared. Both utilized calculated distributions of exposure of the studied population to As from groundwater. Method (I) then entailed calculating disease burden by combining published background rates for death and disability adjusted life years (DALYs) and standard mortality ratios (SMRs) for excess health impacts related to As exposure, whilst for Method (II), disease burden from As exposure was estimated using the basic DALY formula, combined with incidence rates based on the NRC multistage Weibull model. Dose–response data for both methods were based on studies in Taiwan.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号