首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  国内免费   1篇
地质学   1篇
海洋学   6篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2015年   3篇
  2010年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
The carrying capacity for bivalve shellfish culture in Saldanha Bay, South Africa, was analysed through the application of the well-tested EcoWin ecological model, in order to simulate key ecosystem variables. The model was set up using: (i) oceanographic and water-quality data collected from Saldanha Bay, and (ii) culture-practice information provided by local shellfish farmers. EcoWin successfully reproduced key ecological processes, simulating an annual mean phytoplankton biomass of 7.5 µg Chl a l–1 and an annual harvested shellfish biomass of about 3 000 tonnes (t) y–1, in good agreement with reported yield. The maximum annual carrying capacity of Small Bay was estimated as 20 000 t live weight (LW) of oysters Crassostrea gigas, or alternatively 5 100 t LW of mussels Mytilus galloprovincialis, and for Big Bay as 100 000 t LW of oysters. Two production scenarios were investigated for Small Bay: a production of 4 000 t LW y–1 of mussels, and the most profitable scenario for oysters of 19 700 t LW y–1. The main conclusions of this work are: (i) in 2015–2016, both Small Bay and Big Bay were below their maximum production capacity; (ii) the current production of shellfish potentially removes 85% of the human nitrogen inputs; (iii) a maximum-production scenario in both Big Bay and Small Bay would result in phytoplankton depletion in the farmed area; (iv) increasing the production intensity in Big Bay would probably impact the existing cultures in Small Bay; and (v) the production in Small Bay could be increased, resulting in higher income for farmers.  相似文献   
2.
The efficacy of ocean colour remote sensing in assessing the variability of phytoplankton biomass within Saldanha Bay is examined. Satellite estimates of chlorophyll a (Chl a) were obtained using the maximum peak-height (MPH) algorithm on full-resolution (300?m) data from the Medium Resolution Imaging Spectrometer (MERIS). Subsurface Chl a maxima often occur within Saldanha Bay below the mean detection depth of the satellite (1.5?m) during periods of thermal stratification. Consequently, the MPH product was poorly correlated to in situ data from 4?m depth (r2 and average relative percentage difference [RPD] of 0.094 and 53% respectively); however, the coefficient of determination was much improved if limited to in situ data collected under conditions of mixing (r2 and RPD of 0.869 and 89%, respectively). Composites of monthly MPH Chl a data reveal mean concentrations consistent with in situ seasonal trends of phytoplankton biomass, confirming the capability of the MPH algorithm to qualitatively resolve surface Chl a distribution within the bay.  相似文献   
3.
Seasonal, sub-seasonal and spatial fluctuations in bottom dissolved oxygen (DO) were examined in St Helena Bay, South Africa’s largest and most productive embayment, between November 2013 and November 2014. Alongshore bay characteristics were assessed through comparison of variables along the 50-m depth contour. A mean coefficient of variation of 0.35 provided a measure of the relative variability of near-bottom DO concentrations along this contour. Consistently lower DO concentrations in the southern region of the bay in summer and autumn are attributed to enhanced retention. Across-shelf transects captured the seasonal development of hypoxia in relation to the distribution of phytoplankton biomass. Exceptional dinoflagellate blooms form extensive subsurface thin layers preceding the autumn DO minima in the south of the bay, prior to winter ventilation of the bottom waters. The seasonal decline in DO concentrations in the bottom waters was marked by sub-seasonal events of hypoxia, and ultimately anoxia linked to episodic deposition of organic matter, as indicated by increases in bottom chlorophyll-a concentrations. Seasonal changes in bottom water macronutrient concentrations followed trends in apparent oxygen utilisation (AOU), both of which mirrored DO concentrations. In the south of the bay, nitrogen loss through denitrification/anammox in suboxic waters was indicated by a dissolved inorganic N deficit in the bottom waters, which was most pronounced in autumn.  相似文献   
4.
Saldanha Bay is a narrow-mouth bay on the west coast of South Africa linked to the southern Benguela upwelling system. Bay productivity was investigated by use of the conventional light-and-dark bottle oxygen method, and, for comparison, through assimilation of the stable isotope tracer 13C. Gross community production GCP and net community production NCP, as determined from the oxygen method, were respectively 2.6 and 2.4 times higher than estimates determined from the stable isotope method. Chlorophyll a (Chl a) concentrations increased with the onset of spring and well-defined subsurface maxima developed in association with increasingly stratified conditions (mean water column Chl a concentrations ranged from 5.4 to 31.5?mg m?3 [mean 15.5?mg m?3; SD 7.6]). A sharp decline in photosynthetic rates P* (GCP normalised to Chl a concentration) with depth was attributed to light limitation, as demonstrated by the high vertical attenuation coefficients for downward irradiance Kd, which varied from 0.29 to 0.70?m?1 (mean 0.48?m?1; SD 0.12). Productivity maxima were consequently near-surface despite the presence of deeper subsurface biomass maxima. The community compensation depth Zcc, where gross community production balances respiratory carbon loss for the entire community, ranged from 2.9 to 9.2?m (mean 5.8?m; SD 2.2), and was typically shallower than the 1% light depth for PAR (photosynthetically available radiation), Z1%PAR, which is traditionally assumed to be the depth of the euphotic zone and which ranged from 6.6 to 15.9?m (mean 9?m; SD 2.6). Autotrophic communities, where organic matter is produced in excess of respiratory demand, were confined on average to the upper 5.8?m of the water column, and often excluded the bulk of the phytoplankton community, where light limitation is considered to lead to heterotrophic community metabolism. Estimates of integrated water column productivity ranged from 0.84 to 8.46?g C m–2 d?1 (mean 3.35?g C m?2 d?1; SD 1.9).  相似文献   
5.
锡铁山铅锌矿床发育较为完整的喷流沉积系统,包括管道相、近喷口相、远端沉积相及各种喷流沉积岩,并有后期改造作用形成的脉状铅锌矿体。本文通过喷流沉积系统各部位硫化物硫同位素的分析,不同部位硫化物硫同位素组成不同,且规律性变化。以黄铁矿分析结果为例,网脉状石英钠长岩δ34S=+0.8‰,代表供给系统的硫化物脉2.95‰,非层状矿体4.48‰,层状矿体3.25‰,炭质片岩为+6.26‰,后期改造型铅锌矿脉为+2.93‰。代表管道相的网脉状石英钠长岩黄铁矿具有深源(幔源)的硫同位素组成,而矿体或大理岩上盘炭质片岩具有海水硫来源的特点。矿体的硫介于二者之间,更靠近炭质片岩的硫化物同位素组成,其来源可能更多受海水硫酸盐的制约,即锡铁山矿床硫具有混合来源性质,主要是海水硫酸盐的还原,部分来源于深部卤水的供给。硫的还原方式以生物细菌还原为主。层状矿体中硫同位素组成由早至晚δ34S逐渐降低,表明层状矿体成矿作用过程中,发生了生物成因的H2S的大量加入。  相似文献   
6.
This article presents a historical overview of estuarine microphytobenthos (MPB) research in South Africa published over the period 1950 to the present, highlighting major milestones, challenges and estuarine management problems, as well as future research needs within the South African context. The studies that were covered comprise peer-reviewed books and journal articles on relevant research conducted in any estuarine environment during the period reviewed. There was a general increase in MPB research outputs over the decades, from only two publications in the 1950s, to over 20 outputs between 2010 and the present. Whereas the MPB studies in South Africa cover a broad spectrum of themes, the research priorities in these works have changed from taxonomically biased studies to those of ecologically based research. Research in the 1950s and 1960s was exclusively taxonomic in nature, with the first ecological investigation incorporating MPB being produced in the 1970s. By the 1980s, ecological studies dominated the research outputs and this trend has persisted to the present. The 1990s and 2000s saw the rise of research into the role of fresh water as a driver of MPB dynamics, whereas the period 2010 to the present saw an increase in more diverse ecological themes, ranging from an autecological investigation to food-web studies and the assessment of multiple drivers of MPB dynamics. However, the majority of studies have focused on either diatoms or estimates of overall MPB biomass. Moreover, there is a regional underrepresentation that runs broadly along biogeographic lines, with the bulk of the work having been conducted in the warm-temperate and subtropical zones of South Africa. Challenges and future research needs for the region are outlined, as is the need to expand MPB research to include other aspects of the biology and ecology of this flora.  相似文献   
7.
Measurements of NH4, NO3, urea and HCO3 uptake using 15N and 13C stable isotope tracers were undertaken in Saldanha Bay, South Africa, between January 2012 and January 2013. These studies provide the first direct measurements of N utilisation by the plankton in the bay. Primary production in the bay is driven predominantly by the advection of nutrients from the neighbouring shelf environment during upwelling events, with terrestrial and other sources providing minor inputs. New production (NO3-based) was calculated from the f-ratio and total primary production and was used to provide estimates of potential carrying capacity for bivalve culture. Despite the apparent light limitation of NO3 uptake in the winter, the availability of NO3 appeared to exert the major influence on new production throughout the year. In addition, new production was modulated by NH4 availability as shown by the suppression of NO3 uptake by concentrations higher than 1?1.5?mmol m?3. The estimated areal new production of 0.60?g C m?2 d?1 yielded a bay-wide annual estimate of 9 811 t C ha?1 y?1, slightly higher than previous calculations based on physical models. It is estimated that the total annual production of mussels and oysters, respectively, for a 1 000-ha cultivation area is approximately 40 000–53 000 t y?1 (mainly Mytilus galloprovincialis) and 4 600–6 000 t y?1 (Crassotrea gigas). The combined total production figures constitute only 24–31% of the surplus new production. A combined harvestable carrying capacity of 74 000–82 000 t y?1 can be calculated from this surplus. However, from a management and ecological perspective, bivalve culture should be limited to well below this theoretical maximum. Even with this constraint, there appears to be considerable scope for expansion of bivalve farming over the modest, present levels with little jeopardy to ecological integrity.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号