首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   6篇
  国内免费   1篇
地球物理   2篇
地质学   12篇
海洋学   1篇
天文学   13篇
自然地理   3篇
  2019年   1篇
  2017年   5篇
  2015年   2篇
  2014年   2篇
  2013年   1篇
  2009年   2篇
  2008年   1篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1987年   1篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
排序方式: 共有31条查询结果,搜索用时 78 毫秒
1.
Sperm whales are notable squid-eaters. They feed mainly on medium to large-sized cephalopods at midwater levels and defecate near the surface. This suggests the existence of an upward transport of60Co by sperm whales from the mesopelagic zone (150–1,200 m). To elucidate this squid-whale route for this artificial radionuclide,60Co content was determined in squid and in predator whales captured by commercial whaling. In the Cephalopoda livers60Co levels of 30–500 mBq kg–1 wet were found and in the viscera of Odontoceti (toothed whales) 15–40 mBq kg–1 wet. About 0.3% of80Co ingested was estimated to be retained in a 23-year-old male sperm whale. In the livers of Bryde's whales,60Co levels of 40–80 mBq kg–1 wet were detected, but not in euphausiids and sardines, their possible prey. The level of Co in sperm whales was nearly the same as in Bryde's whales. Specific radioactivity60Co/59Co in mBq µg–1 was several times higher in sperm whale (1.1–1.6) than in cephalopods (0.19–0.77). Eating prey with a high content of60Co in the 1960's may have contributed to the present body burden in sperm whales with a long-life span. However, the origin of60Co in Bryde's whales is unknown.  相似文献   
2.
Six C1 chondrite samples and a C2 xenolith from the Plainview H5 chondrite were analyzed by radiochemical neutron activation for the elements Ag, Au, Bi, Br, Cd, Ce, Cs, Eu, Ge, In, Ir, Lu, Nd, Ni, Os, Pd, Pt, Rb, Re, Sb, Se, Sn, Tb, Te, Tl, Yb, and Zn. The data were combined with 9 earlier analyses from this laboratory and examined for evidence of chemical fractionation in C1 chondrites.A number of elements (Br, Rb, Cs, Au, Re, Os, Ni, Pd, Sb, Bi, In, Te) show small but correlated variations. Those of the first 8 probably reflect hydrothermal alteration in the meteorite parent body, whereas those of Sb, Bi, In, and Te may at least in part involve nebular processes. Br and Au show systematic abundance differences from meteorite to meteorite, which suggests hydrothermal transport on a kilometer scale. The remaining elements vary from sample to sample, suggesting transport on a centimeter scale.There is no conclusive evidence for nebular fractionation affecting C1 's. Though C1 chondrites have lower ZrHf and IrRe ratios than do other chondrite classes, these ratios vary in other classes, suggesting that those classes rather than C1's are fractionated. Three fractionation-prone REE—Ce, Eu, and Yb have essentially the same relative abundances in C1's and all other chondrite classes, and hence apparently are not fractionated in C1's. We did not confirm the large Tb and Yb variations in C1's reported by other workers.We present revised mean C1 abundances for 35 elements, based on the new data and a critical selection of literature data. Changes are generally less than 10%, except for Br, Rb, Ag, Sb, Te, Au, and the REE.The Plainview C2 xenolith has normal trace element abundances, except for 3 elements falling appreciably above the C2 range: Rb, Cs, and Bi. Hydrothermal alteration may be the reason for all 3, though nebular fractionation remains a possibility for Bi.  相似文献   
3.
The unique occurrence of abundant (~1 vol%) near‐pure‐Fe metal in the Camel Donga eucrite is more complicated than previously believed. In addition to that component of groundmass metal, scattered within the meteorite are discrete nodules of much higher kamacite abundance. We have studied the petrology and composition of two of these nodules in the form of samples we call CD2 and CD3. The nodules are ovoids 11 (CD2) to 15 (CD3) mm across, with metal, or inferred preweathering metal, abundances of 12–17 vol% (CD2 is unfortunately quite weathered). The CD3 nodule also includes at its center a 5 mm ovoid clumping (6 vol%) of F‐apatite. Both nodules are fine‐grained, so the high Fe metal and apatite contents are clearly not flukes of inadequate sampling. The metals within the nodules are distinctly Ni‐rich (0.3–0.6 wt%) compared to the pure‐Fe (Ni generally 0.01 wt%) groundmass metals. Bulk analyses of three pieces of the CD2 nodule show that trace siderophile elements Ir, Os, and Co are commensurately enriched; Au is enriched to a lesser degree. The siderophile evidence shows the nodules did not form by in situ reduction of pyroxene FeO. Moreover, the nodules do not show features such as silica‐phase enrichment or pyroxene with reduced FeO (as constrained by FeO/MgO and especially FeO/MnO) predicted by the in situ reduction model. The oxide minerals, even in groundmass samples well away from the nodules, also show little evidence of reduction. Although the nodule boundaries are generally sharp, groundmass‐metal Ni content is anti‐correlated with distance from the CD3 nodule. We infer that the nodules represent materials that originated within impactors into the Camel Donga portion of the eucrite crust, but probably were profoundly altered during later metamorphism/metasomatism. Origin of the pure‐Fe groundmass metal remains enigmatic. In situ reduction probably played an important role, and association in the same meteorite of the Fe‐nodules is probably significant. But the fluid during alteration was probably not (as previously modeled) purely S and O, of simple heat‐driven internal derivation. We conjecture a two‐stage metasomatism, as fluids passed through Camel Donga after impact heating of volatile‐rich chondritic masses (survivors of gentle accretionary impacts) within the nearby crust. First, reduction to form troilite may have been triggered by fluids rich in S2 and CO (derived from the protonodules?), and then in a distinct later stage, fluids were (comparatively) H2O‐rich, and thus reacted with troilite to form pure‐Fe metal along with H2S and SO2. The early eucrite crust was in places a dynamic fluid‐bearing environment that hosted complex chemical processes, including some that engendered significant diversity among metal+sulfide alterations.  相似文献   
4.
We performed a petrological and geochemical study of an olivine diogenite, Northwest Africa (NWA) 5480. NWA 5480 is a crystalline stone, but shows a heterogeneous texture. Olivine aggregates and grains of olivine and chromite display resorption textures set in a crystalline pyroxene matrix. Large olivine aggregates are penetrated by pyroxene matrix. Flow textures are observed near olivine aggregates. Olivine, chromite, and pyroxene show minor chemical zoning, implying relatively rapid cooling. NWA 5480 contains a significant amount of platinum group elements with chondritic relative proportions. All this evidence supports that NWA 5480 is an impact‐melt breccia from a target composed of olivine and pyroxene‐rich lithologies. Such impact melt would have formed by melting crustal materials, possibly during one of the impacts that formed the South Pole basins on Vesta.  相似文献   
5.
Abstract— We studied the texture, mineralogy, and bulk chemical composition of Dhofar 007, a basaltic achondrite. Dhofar 007 is a polymict breccia that is mostly composed of coarse‐grained granular (CG) clasts with a minor amount of xenolithic components, such as a fragment of Mg‐rich pyroxene. The coarse‐grained, relict gabbroic texture, mineral chemistry, and bulk chemical data of the coarse‐grained clast indicate that the CG clasts were originally a cumulate rock crystallized in a crust of the parent body. However, in contrast to monomict eucrites, the siderophile elements are highly enriched and could have been introduced by impact events. Dhofar 007 appears to have experienced a two‐stage postcrystallization thermal history: rapid cooling at high temperatures and slow cooling at lower temperatures. The presence of pigeonite with closely spaced, fine augite lamellae suggests that this rock was cooled rapidly from higher temperatures (>0.5 °C/yr at ˜1000 °C) than typical cumulate eucrites. However, the presence of the cloudy zone in taenite and the Ni profile across the kamacite‐taenite boundaries indicates that the cooling rate was very slow at lower temperatures (˜1–10 °C/Myr at <600–700 °C). The slow cooling rate is comparable to those in mesosiderites and pallasites. The two‐stage thermal history and the relative abundance of siderophile elements similar to those for metallic portions in mesosiderites suggest that Dhofar 007 is a large inclusion of mesosiderite. However, we cannot rule out a possibility that Dhofar 007 is an anomalous eucrite.  相似文献   
6.
We have performed a mineralogical and geochemical study of eight metamorphosed basaltic eucrites. These are classified into granulitic eucrites and type 4–7 eucrites on the basis of their textures and pyroxene mineralogy, and display mineralogical evidence for high temperature metamorphism, including partial melting. In particular, rare earth element (REE) patterns of a number of the eucrites studied show varying degrees of light REE depletion due to partial melting, with subsequent melt extraction. A simple correlation between metamorphic grade, as deduced from pyroxene mineralogy, and the degree of light REE depletion was not detected. This can be explained by the fact that homogenization, exsolution and inversion of pigeonite would have required prolonged heating at moderate temperatures (800–1000 °C), whereas partial melting would have taken place over a short time interval where temperatures exceeded that of the solidus. The eucrites studied therefore record a two stage thermal regime consisting of short, high temperature reheating events superimposed on long duration global crustal metamorphism. The short reheating events may have been caused by impact events and/or intrusions of hot magmas. The results of this study demonstrate that the thermal history of eucritic crust was more complex than can be explained by a simple burial model alone. In particular, the origin of Stannern trend eucrites requires contamination of Main-Group magmas by partial melts extracted from residual eucrites.  相似文献   
7.
As a part of a consortium study, we analyzed the Martian meteorite Yamato (Y) 000097 by prompt gamma-ray analysis, instrumental neutron activation analysis, and instrumental photon activation analysis. For comparison, we also analyzed Allan Hills (ALH) 77005 using the same methods. The data confirm that Y000097 belongs to lherzolitic shergottites in terms of chemical composition. Although there exist slight differences in elemental abundances among lherzolitic shergottites due to differences in the modal abundances of constituent minerals, they have essentially the same chemical compositions, suggesting they are genetically related and experienced similar formation histories.Zr/Hf ratios obtained for Y000097 and ALH 77005 are subchondritic, consistent with values reported for other lherzolitic shergottites and olivine-phyric shergottites. Such fractionation can be explained by invoking clinopyroxene, ilmenite, or majorite in the petrogenesis of the shergottites' source material. CI-normalized Hf/Sm ratios obtained for Y000097 and ALH 77005 are 1.52 and 1.37, respectively, consistent with superchondritic Hf/Sm ratios reported for shergottites. Based on experimentally derived partition coefficients, majorite is the best candidate mineral for the fractionation of Hf and Sm in shergottites.  相似文献   
8.
Two silicate grains (RB‐QD04‐0049 and RA‐QD02‐0064, whose estimated masses are 0.050 μg and 0.048 μg, respectively) recovered from the asteroid Itokawa by the Hayabusa spacecraft were studied for their mineralogical characteristics by synchrotron X‐ray diffraction and synchrotron X‐ray microtomography and further analyzed for their bulk chemical compositions by instrumental neutron activation analysis (INAA). According to X‐ray tomography, RB‐QD004‐0049 is composed of olivine, high‐Ca pyroxene, plagioclase, Ca‐phosphate, and troilite, whereas RA‐QD002‐0064 entirely consists of olivine. INAA data are consistent with these mineral compositions except for rare earth elements (REEs). Although the grain RB‐QD004‐0049 contains measurable REEs, which seems to be consistent with the presence of Ca‐phosphate, their abundances are anomalously high. Very low abundance of Co implies less than 0.1 mass% of metals in these two grains by calculation, which is in contrast to the result for the previously analyzed grain RA‐QD02‐0049 (Ebihara et al., 2011). FeO/Sc ratios of the grains fall within the range of those for ordinary chondrite olivines, implying that these grains are extraterrestrial in origin. FeO/MnO ratios also confirm this conclusion and further suggest that the Hayabusa grains analyzed in this study are similar to material found in LL chondrites rather than CK chondrites although olivines from LL and CK chondrites have similar Fa# (molar% of Fe relative to [Fe+Mg] in olivine) (~30) to those of the Hayabusa grains including the two grains analyzed in this study.  相似文献   
9.
The abundances of nine rare earth elements (REE) in phosphate separates from three ordinary chondrites, Saint Séverin (LL6), Bruderheim (L6) and Richardton (H5), were measured by instrumental neutron activation analysis. All REE except europium are enriched in the phosphate minerals (merrillite and chlorapatite) by factor of 200–300 relative to the chondritic average, whereas Eu is enriched by a factor of 40–50. Electron microprobe analysis showed no significant differences in phosphate mineral composition among the three chondrites studied, though the relative proportions of two minerals varied.According to our data, REE are enriched by almost the same factor in merrillite and chlorapatite in the Bruderheim and, with less certainty, in the other two chondrites. This behavior of REE contrast with that of the actinoid elements, Th, U and Pu, which are also enriched in phosphate but are fractionated between merrillite and chlorapatite. Since Pu and REE show different fractionation behavior in chondritic phosphates, it may be difficult to use REE as stand-ins for Pu in244Pu chronology.  相似文献   
10.
A guided wave along a borehole is often observed in borehole radar measurements. These guided waves deform the antenna pattern and can cause artefacts in radar measurements. A water-filled borehole or a conducting logging cable can function as a waveguide for electromagnetic waves under some conditions. We describe the theoretical characteristics of such a guided wave in a borehole and compare them with our experiments. The measured signal discussed was obtained with a directional borehole radar. This radar uses a cylindrical conformal array antenna as receiver and is a model of a conducting structure in a borehole. The induced field around the borehole was compared with the theory. The most fundamental symmetrical and asymmetrical modes were TM01 and HE11, and they were identified in the measured signals using time–frequency distribution analysis and by observation of the azimuthal field distribution of the magnetic field.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号