首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   2篇
测绘学   1篇
大气科学   4篇
地球物理   5篇
地质学   7篇
海洋学   1篇
自然地理   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   4篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2001年   1篇
  1997年   1篇
排序方式: 共有19条查询结果,搜索用时 114 毫秒
1.
Aziz  Asad  Anwar  Muhammad Mushahid  Dawood  Muhammad 《GeoJournal》2021,86(4):1915-1925

A strong need exists to increase the knowledge and recognize the values of neighborhood services. This paper makes an attempt to examine the impact of neighborhood services on land values, through analysis based on results obtained from multi linear regression analysis. This case study was done in area of dense urban settlement to check the consequence of neighborhood services through the hedonic pricing model base variables which include the structural, locational, community and neighborhood services. The regression coefficient was checked at (p?<?0.05) level of significance for each variable. The primary data was collect through the questionnaire filling by random sampling and Punjab Urban Gazette was used for the verification of land values in study area. The results found a valuable potential on land and property values of neighborhood services through the regression analysis results express through R (0.926), R2 (0.856) and coefficient tables to represent the effect of each individual variable on property and land values. Every individual variable play role in defining the values of land and property based upon its utilization such as larger the structure of a property, more the covered area, larger size of a property more the land area higher price. Similarly, for locational factor study in geography, a piece of land adjacent to the road have high land values 50–70% compare to those located at distance. Very less attention has been paid on such issues in the world due to lack of effective urban planning and research on such crucial issues. If empirical studies on such issue has been done, effective way can be obtained for urban planning.

  相似文献   
2.
Tsunami hazard in the Makran Subduction Zone (MSZ), off the southern coasts of Iran and Pakistan, was studied by numerical modeling of historical tsunami in this region. Although the MSZ triggered the second deadliest tsunami in the Indian Ocean, among those known, the tsunami hazard in this region has yet to be analyzed in detail. This paper reports the results of a risk analysis using five scenario events based on the historic records, and identifies a seismic gap area in western Makran off the southern coast of Iran. This is a possible site for a future large earthquake and tsunami. In addition, we performed numerical modeling to explain some ambiguities in the historical reports. Based on the modeling results, we conclude that either the extreme run-up of 12–15 m assigned for the 1945 Makran tsunami in the historical record was produced by a submarine landslide triggered by the parent earthquake, or that these reports are exaggerated. The other possibility could be the generation of the huge run-up heights by large displacements on splay faults. The results of run-up modeling reveal that a large earthquake and tsunami in the MSZ is capable of producing considerable run-up heights in the far field. Therefore, it is possible that the MSZ was the source of the tsunami encountered by a Portuguese fleet in Dabhul in 1524.  相似文献   
3.
4.
5.
Snowcover dynamics and associated accumulation and depletion of snowcover along with its spatial and temporal scale mainly constitute hydrological phenomena of the given basin and are mostly controlled by the local climate variables. Snow accumulation and melting time and duration determine the cyclic volume of water resources and downstream availability. In this study, snowcover area (SCA) was extracted from remotely sensed Moderate Resolution Imaging Spectroradiometer (MODIS) snow products (MOD10A2) for the period 2000–2016. Data for hydro-meteorological parameters was obtained from relevant departments acquired through their field stations. The analysis of 16-year satellite data shows that there is a slight increase in cryospheric area at high altitude. In Astore basin, the study concluded that 15–20% of the basin area is covered by glacier and snowcover may reach around 90–95% of the basin area due to accumulation of seasonal snow from the westerly wind circulation. Analysis of hydro-meteorological parameters showed significant correlation between temperatures (Tmax, Tmin) and river runoff while no significant correlation was observed between river runoff and rainfall. Similarly, significant inverse correlation was found between river runoff and Astore mean snowcover. At sub-altitudinal zone level (zones 1, 2, 3), river runoff has significant correlation with snowcover. Analysis of 20-year climate data along with river runoff depicts that river runoff is a general phenomenon of snowmelt when minimum temperature starts to rise above 4 °C during mid of April. The study highlights the importance and interdependence of meteorological parameters and snowcover dynamics in determining the hydrological characteristics of Astore Basin.  相似文献   
6.
Ijaz Ahmad  Ahmad  Zulfiqar  Lisa  Mona  Mahmood  Syed Amer  Ali  Asad  Rehman  Obaid Ur 《Water Resources》2019,46(6):894-909
Water Resources - Snow cover dynamics play an important role in the hydrological characteristics of Upper Indus Basin (UIB) of Pakistan in terms of seasonal accumulation and depletions. The current...  相似文献   
7.
8.
This study examines the ability of Community Atmosphere Model (CAM) and Community Climate System Model (CCSM) to simulate the Asian summer monsoon, focusing particularly on inter-model comparison and the role of air–sea interaction. Two different versions of CAM, namely CAM4 and CAM5, are used for uncoupled simulations whereas coupled simulations are performed with CCSM4 model. Ensemble uncoupled simulations are performed for a 30 year time period whereas the coupled model is integrated for 100 years. Emphasis is placed on the simulation of monsoon precipitation by analyzing the interannual variability of the atmosphere-only simulations and sea surface temperature bias in the coupled simulation. It is found that both CAM4 and CAM5 adequately simulated monsoon precipitation, and considerably reduced systematic errors that occurred in predecessors of CAM4, although both tend to overestimate monsoon precipitation when compared with observations. The onset and cessation of the precipitation annual cycle, along with the mean climatology, are reasonably well captured in their simulations. In terms of monsoon interannual variability and its teleconnection with SST over the Pacific and Indian Ocean, both CAM4 and CAM5 showed modest skill. CAM5, with revised model physics, has significantly improved the simulation of the monsoon mean climatology and showed better skill than CAM4. Using idealized experiments with CAM5, it is seen that the adoption of new boundary layer schemes in CAM5 contributes the most to reduce the monsoon overestimation bias in its simulation. In the CCSM4 coupled simulations, several aspects of the monsoon simulation are improved by the inclusion of air–sea interaction, including the cross-variability of simulated precipitation and SST. A significant improvement is seen in the spatial distribution of monsoon mean climatology where a too-heavy monsoon precipitation, which occurred in CAM4, is rectified. A detailed investigation of this significant precipitation reduction showed that the large systematic cold SST errors in the Northern Indian Ocean reduces monsoon precipitation and delays onset by weakening local evaporation. Sensitivity experiments with CAM4 further confirmed these results by simulating a weak monsoon in the presence of cold biases in the Northern Indian Ocean. It is found that although the air–sea coupling rectifies the major weaknesses of the monsoon simulation, the SST bias in coupled simulations induces significant differences in monsoon precipitation. The overall simulation characteristics demonstrate that although the new model versions CAM4, CAM5 and CCSM4, are significantly improved, they still have major weaknesses in simulating Asian monsoon precipitation.  相似文献   
9.
Climate change caused by anthropogenic activities has generated a variety of research focusing on investigating the past climate, predicting the future climate and quantifying the change in climate extreme events by using different climate models. Climate extreme events are valuable to evaluate the potential impact of climate change on human activities, agriculture and economy and are also useful to monitor the climate change on global scale. Here, a Regional Climate Model (RCM) simulation is used to study the future variations in the temperature extreme indices, particularly change in frequency of warm and cold spells duration over Pakistan. The analyses are done on the basis of simulating two 30 years simulations with the Hadley Center’s RCM PRECIS, at a horizontal resolution of 50 km. Simulation for the period 1961–1990 represents the recent climate and simulation for the period 2071–2100 represents the future climate. These simulations are driven by lateral boundary conditions from HadAM3P GCM of Hadley centre UK. For the validation of model, observed mean, maximum and minimum temperatures for the period 1961–1990 at all the available stations in Pakistan are first averaged and are then compared with the PRECIS averaged grid-box data. Also the observed monthly gridded data set of Climate Research Unit (UK) data is used to validate the model. Temperature indices in the base period as well as in future are then calculated and the corresponding change is observed. Percentile based spatial change of temperature shows that in summer, increase in daily minimum temperature is more as compared to the increase of daily maximum temperature whereas in winter, the change in maximum temperature is high. The occurrence of annual cold spells shows significantly decreasing trend while for warm spells there is slight increasing trend over Pakistan.  相似文献   
10.
In this work, synthesis of chitosan beads impregnated with nano-γ-Al2O3 (AlCB) was carried out. The characteristics of the synthesized adsorbent were obtained by using Brunauer Emmett and Teller technique and Scanning Electron Microscopy method. The use of AlCB in continuous removal of chromium, lead, nickel and cadmium ions from liquid solution was studied using fixed-bed column system. Bed depths and flow rate effects on breakthrough and uptake capacity of the adsorbent in column were also examined. Dynamic parameters of the adsorption were calculated by using bed depth service time (BDST) and Thomas models. In both models, the data were analyzed by error analyzing and combining the values of determined coefficient (R 2) from regression analysis. The adsorption capacities of AlCB in breakthrough were 158.33, 183.33, 63.33 and 31.67 mg/g for chromium, lead, nickel and cadmium, respectively. In addition, BDST model was found to be an acceptable kinetic model to describe the experimental data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号