首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   2篇
  国内免费   2篇
大气科学   1篇
地球物理   7篇
地质学   20篇
海洋学   1篇
自然地理   1篇
  2021年   1篇
  2019年   1篇
  2018年   4篇
  2016年   5篇
  2014年   1篇
  2012年   3篇
  2011年   1篇
  2010年   5篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  1976年   1篇
排序方式: 共有30条查询结果,搜索用时 503 毫秒
1.
2.
We present elemental and Sr–Nd–Pb isotopic data for the magmatic suite (~79 Ma) of the Harşit pluton, from the Eastern Pontides (NE Turkey), with the aim of determining its magma source and geodynamic evolution. The pluton comprises granite, granodiorite, tonalite and minor diorite (SiO2 = 59.43–76.95 wt%), with only minor gabbroic diorite mafic microgranular enclaves in composition (SiO2 = 54.95–56.32 wt%), and exhibits low Mg# (<46). All samples show a high-K calc-alkaline differentiation trend and I-type features. The chondrite-normalized REE patterns are fractionated [(La/Yb) n  = 2.40–12.44] and display weak Eu anomalies (Eu/Eu* = 0.30–0.76). The rocks are characterized by enrichment of LILE and depletion of HFSE. The Harşit host rocks have weak concave-upward REE patterns, suggesting that amphibole and garnet played a significant role in their generation during magma segregation. The host rocks and their enclaves are isotopically indistinguishable. Sr–Nd isotopic data for all of the samples display I Sr = 0.70676–0.70708, ε Nd(79 Ma) = −4.4 to −3.3, with T DM = 1.09–1.36 Ga. The lead isotopic ratios are (206Pb/204Pb) = 18.79–18.87, (207Pb/204Pb) = 15.59–15.61 and (208Pb/204Pb) = 38.71–38.83. These geochemical data rule out pure crustal-derived magma genesis in a post-collision extensional stage and suggest mixed-origin magma generation in a subduction setting. The melting that generated these high-K granitoidic rocks may have resulted from the upper Cretaceous subduction of the Izmir–Ankara–Erzincan oceanic slab beneath the Eurasian block in the region. The back-arc extensional events would have caused melting of the enriched subcontinental lithospheric mantle and formed mafic magma. The underplating of the lower crust by mafic magmas would have played a significant role in the generation of high-K magma. Thus, a thermal anomaly induced by underplated basic magma into a hot crust would have caused partial melting in the lower part of the crust. In this scenario, the lithospheric mantle-derived basaltic melt first mixed with granitic magma of crustal origin at depth. Then, the melts, which subsequently underwent a fractional crystallization and crustal assimilation processes, could ascend to shallower crustal levels to generate a variety of rock types ranging from diorite to granite. Sr–Nd isotope modeling shows that the generation of these magmas involved ~65–75% of the lower crustal-derived melt and ~25–35% of subcontinental lithospheric mantle. Further, geochemical data and the Ar–Ar plateau age on hornblende, combined with regional studies, imply that the Harşit pluton formed in a subduction setting and that the back-arc extensional period started by least ~79 Ma in the Eastern Pontides.  相似文献   
3.
Surface rupture and source fault of the 20 February 1956 Eskişehir earthquake have been a matter of debate that potentially contributes towards the understanding of the active deformation and seismic risk in the highly populated NW Anatolia. Field observations on the two fault segments (namely Kavacık and Uludere faults) in the north of the Eskişehir graben revealed evidences of co-seismic surface rupture and mass movements during the Eskişehir earthquake. Surface rupture was observed as a 2.5m wide, a 100m long and ca. 20 cm deep asymmetric depression in the Gümüşlü valley, 2 km east of the Uludere village. A trench dug on this depression confirms a prominent high-angle south dipping fault (dominantly left lateral strike slip) and two faint north-dipping antithetics as clear noticeable shear zones in organic-rich thick soil. Mass failures are particularly observed in spring depressions filled with loose torrent and carbonaceous material in front of the fault scarp. Some rock slides of several tens of meters in size that obviously require significantly high ground shaking were also developed on steep fault scarps. The orientation of the principal stress tensor as deduced from the surface rupture of the Eskişehir earthquake displays clear inconsistency with the geometry of prominent faults in the area. We concluded that this disagreement may be explained by a curved surface rupture. The western and eastern tips of this rupture are EW trending and the probable NW-running part in the middle would correspond to the bounding zone between two right-stepping faults.  相似文献   
4.
Geologic uncertainties and limited well data often render recovery forecasting a difficult undertaking in typical appraisal and early development settings. Recent advances in geologic modeling algorithms permit automation of the model generation process via macros and geostatistical tools. This allows rapid construction of multiple alternative geologic realizations. Despite the advances in geologic modeling, computation of the reservoir dynamic response via full-physics reservoir simulation remains a computationally expensive task. Therefore, only a few of the many probable realizations are simulated in practice. Experimental design techniques typically focus on a few discrete geologic realizations as they are inherently more suitable for continuous engineering parameters and can only crudely approximate the impact of geology. A flow-based pattern recognition algorithm (FPRA) has been developed for quantifying the forecast uncertainty as an alternative. The proposed algorithm relies on the rapid characterization of the geologic uncertainty space represented by an ensemble of sufficiently diverse static model realizations. FPRA characterizes the geologic uncertainty space by calculating connectivity distances, which quantify how different each individual realization is from all others in terms of recovery response. Fast streamline simulations are employed in evaluating these distances. By applying pattern recognition techniques to connectivity distances, a few representative realizations are identified within the model ensemble for full-physics simulation. In turn, the recovery factor probability distribution is derived from these intelligently selected simulation runs. Here, FPRA is tested on an example case where the objective is to accurately compute the recovery factor statistics as a function of geologic uncertainty in a channelized turbidite reservoir. Recovery factor cumulative distribution functions computed by FPRA compare well to the one computed via exhaustive full-physics simulations.  相似文献   
5.
The Most Frequent Value Method (MFV) is applied to groundwater modeling as a robust and effective geostatistical method. The Most Frequent Value method is theoretically derived from the minimization of the information loss called the I-divergence. The MFV algorithm is then coupled with global optimization (Very Fast Simulated Annealing) to provide a powerful method for solving the inverse problems in groundwater modeling. The advantages and applicability of this new approach are illustrated by means of theoretical investigations and case studies. It is demonstrated that the MFV method has certain advantages over the conventional statistical methods derived from the maximum likelihood principle.
Resumen El Método del Valor Mas Frecuente (VMF), es aplicado al modelamiento de agua subterránea, como un método geoestadístico simple y efectivo. Este método es derivado teóricamente de la acción de reducir al mínimo la pérdida de información, llamada así divergencia – I. El algoritmo del VMF es entonces acoplado con optimización global(Very Fast Simulated Annealing), para obtener así un método efectivo que resuelva los problemas inversos en el modelamiento de aguas subterráneas. Las ventajas y aplicabilidad de esta aproximación nueva son ilustradas a través de investigaciones teóricas y estudios de caso. Se demuestra que el método VMF tiene ciertas ventajas sobre los métodos estadísticos convencionales derivados del principio de la probabilidad máxima.

Résumé On a appliqué la méthode de la valeur la plus fréquente (VPF) comme une méthode géostatistique robuste et efficace pour modéliser les eaux souterraines. Du point de vue théorique, la méthode de VPF part de la minimisation de linformation perdue, dénommée I-divergence. On couple après lalgorithme de la méthode de VPF avec la méthode doptimisation globale affin de réaliser une méthode performante pour résoudre le problème inverse dans le domaine des eaux souterraine. Les avantages et les possibilités dapplication de cette nouvelle approche sont illustrées par des investigations théoriques, ainsi que par des études de cas. On montre que la méthode de VPF présente certains avantages par rapport des méthodes statistiques conventionnelles basées sur le principe de la probabilité maximale.
  相似文献   
6.
Advances in pore-scale imaging (e.g., μ-CT scanning), increasing availability of computational resources, and recent developments in numerical algorithms have started rendering direct pore-scale numerical simulations of multi-phase flow on pore structures feasible. Quasi-static methods, where the viscous and the capillary limit are iterated sequentially, fall short in rigorously capturing crucial flow phenomena at the pore scale. Direct simulation techniques are needed that account for the full coupling between capillary and viscous flow phenomena. Consequently, there is a strong demand for robust and effective numerical methods that can deliver high-accuracy, high-resolution solutions of pore-scale flow in a computationally efficient manner. Direct simulations of pore-scale flow on imaged volumes can yield important insights about physical phenomena taking place during multi-phase, multi-component displacements. Such simulations can be utilized for optimizing various enhanced oil recovery (EOR) schemes and permit the computation of effective properties for Darcy-scale multi-phase flows.We implement a phase-field model for the direct pore-scale simulation of incompressible flow of two immiscible fluids. The model naturally lends itself to the transport of fluids with large density and viscosity ratios. In the phase-field approach, the fluid-phase interfaces are expressed in terms of thin transition regions, the so-called diffuse interfaces, for increased computational efficiency. The conservation law of mass for binary mixtures leads to the advective Cahn–Hilliard equation and the condition that the velocity field is divergence free. Momentum balance, on the other hand, leads to the Navier–Stokes equations for Newtonian fluids modified for two-phase flow and coupled to the advective Cahn–Hilliard equation. Unlike the volume of fluid (VoF) and level-set methods, which rely on regularization techniques to describe the phase interfaces, the phase-field method facilitates a thermodynamic treatment of the phase interfaces, rendering it more physically consistent for the direct simulations of two-phase pore-scale flow. A novel geometric wetting (wall) boundary condition is implemented as part of the phase-field method for the simulation of two-fluid flows with moving contact lines. The geometric boundary condition accurately replicates the prescribed equilibrium contact angle and is extended to account for dynamic (non-equilibrium) effects. The coupled advective Cahn–Hilliard and modified Navier–Stokes (phase-field) system is solved by using a robust and accurate semi-implicit finite volume method. An extension of the momentum balance equations is also implemented for Herschel–Bulkley (non-Newtonian) fluids. Non-equilibrium-induced two-phase flow problems and dynamic two-phase flows in simple two-dimensional (2-D) and three-dimensional (3-D) geometries are investigated to validate the model and its numerical implementation. Quantitative comparisons are made for cases with analytical solutions. Two-phase flow in an idealized 2-D pore-scale conduit is simulated to demonstrate the viability of the proposed direct numerical simulation approach.  相似文献   
7.
Early Cenozoic (48–50 Ma) adakitic volcanic rocks from the Eastern Pontides, NE Turkey, consist of calc-alkaline and high-K calc-alkaline andesite and dacite, with SiO2 contents ranging from 56.01 to 65.44 wt.%. This is the first time that Early Eocene volcanism and adakites have been reported from the region. The rocks are composed of plagioclase, amphibole, quartz, and Mg-rich biotite. They have high and low-Mg# values ranging from 55 to 62 and 13 to 42, respectively. High-Mg# rocks have higher Ni and Co contents than low-Mg# samples. The rocks exhibit enrichments in large ion lithophile elements including the light rare earth elements, depletions in Nb, Ta and Ti and have high La/Yb and Sr/Y ratios. Their relative high ISr (0.70474–0.70640) and low εNd (50 Ma) values (? 2.3 to 0.8) are inconsistent with an origin as partial melts of a subducted oceanic slab. Combined major- and trace element and Sr–Nd isotope data suggest that the adakitic magmas are related to the unique tectonic setting of this region, where a transition from a collision to an extension stage has created thickening and delamination of the Pontide mafic lower crust at 50 Ma. The high-Mg adakitic magmas resulted from partial melting of the delaminated eclogitic mafic lower crust that sank into the relatively hot subcrustal mantle, and its subsequent interaction with the mantle peridotite during upward transport, leaving garnet as the residual phase, elevates the MgO content and Mg# of the magmas, whereas low-Mg# magmas formed by the melting of newly exposed lower crustal rocks caused by asthenospheric upwelling, which supplies heat flux to the lower crust. The data also suggest that the mafic lower continental crust beneath the region was thickened between the Late Cretaceous and the Late Paleocene and delaminated during Late Paleocene to Early Eocene time, which coincides with the initial stage of crustal thinning caused by crustal extensional events in the Eastern Pontides and rules out the possibility of an extensional regime before ~ 50 Ma in the region during the Late Mesozoic to Early Cenozoic.  相似文献   
8.
Following a period of heavy precipitation, a large and complex mass movement, namely the Dagkoy landslide, occurred in the West Black Sea Region of Turkey on May 21, 1998. This paper describes the conditioning factors of the landslide and interprets the mass transport processes in terms of a movement scenario. Geology, geomorphology and vegetation cover were considered as the conditioning factors of the failure. Observations showed that the gently sloping (about 10°) area is mostly covered by dense forest trees at the crown where the motion initiated. Significant intersection of the collapsed slope with dip of the local marls seems to have contributed to the formation and geometry of the landslide. The distance from the crown down to the toe of the landslide measured more than 600 m, with about 0.6 km3 total earth material displaced. The landslide has both a block sliding characteristics in the upper portions and a debris flow/soil flow component around the margins of the sliding blocks in the middle parts and at the toe. The proposed scenario for the landslide reveals that the movement was initiated near crown as a result of the excess water content in the marls at the end of 3 days of heavy rainfall. The early perturbations (transverse cracks, ridges, etc.) lasted for 6–7 h, after which the central part of the zone started to move as a soil flow in which very large intact blocks were transported. Even though the movement was very rapid (1.2 m/min), there was no loss of life. However, the movement destroyed 38 houses, one mosque and a considerable amount of farmland.  相似文献   
9.
The Galerkin finite-element discretization of the force balance equation typically leads to large linear systems for geomechanical problems with realistic dimensions. In iteratively coupled flow and geomechanics modeling, a large linear system is solved at every timestep often multiple times during coupling iterations. The iterative solution of the linear system stemming from the poroelasticity equations constitutes the most time-consuming and memory-intensive component of coupled modeling. Block Jacobi, LSOR, and Incomplete LU factorization are popular preconditioning techniques used for accelerating the iterative solution of the poroelasticity linear systems. However, the need for more effective, efficient, and robust iterative solution techniques still remains especially for large coupled modeling problems requiring the solution of the poroelasticity system for a large number of timesteps. We developed a supercoarsening multigrid method (SCMG) which can be multiplicatively combined with commonly used preconditioning techniques. SCMG has been tested on a variety of coupled flow and geomechanics problems involving single-phase depletion and multiphase displacement of in-situ hydrocarbons, CO2 injection, and extreme material property contrasts. Our analysis indicates that the SCMG consistently improves the convergence properties of the linear systems arising from the poroelasticity equations, and thus, accelerates the coupled simulations for all cases subject to investigation. The joint utilization of the two-level SCMG with the ILU1 preconditioner emerges as the most optimal preconditioning/iterative solution strategy in a great majority of the problems evaluated in this work. The BiCGSTAB iterative solver converges more rapidly compared to PCG in a number of test cases, in which various SCMG-accelerated preconditioning strategies are applied to both iterators.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号