首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   384篇
  免费   163篇
  国内免费   901篇
测绘学   20篇
大气科学   181篇
地球物理   118篇
地质学   839篇
海洋学   135篇
天文学   2篇
综合类   121篇
自然地理   32篇
  2024年   13篇
  2023年   43篇
  2022年   57篇
  2021年   58篇
  2020年   37篇
  2019年   59篇
  2018年   39篇
  2017年   39篇
  2016年   37篇
  2015年   91篇
  2014年   154篇
  2013年   134篇
  2012年   39篇
  2011年   45篇
  2010年   40篇
  2009年   28篇
  2008年   46篇
  2007年   77篇
  2006年   63篇
  2005年   86篇
  2004年   81篇
  2003年   44篇
  2002年   25篇
  2001年   33篇
  2000年   22篇
  1999年   25篇
  1998年   9篇
  1997年   5篇
  1996年   3篇
  1994年   1篇
  1992年   1篇
  1991年   2篇
  1988年   1篇
  1987年   4篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1946年   1篇
  1935年   2篇
排序方式: 共有1448条查询结果,搜索用时 24 毫秒
1.
To reveal the effect of shale reservoir characteristics on the movability of shale oil and its action mechanism in the lower third member of the Shahejie Formation(Es3l), samples with different features were selected and analyzed using N2 adsorption, high-pressure mercury injection capillary pressure(MICP), nuclear magnetic resonance(NMR), high-speed centrifugation, and displacement image techniques. The results show that shale pore structure characteristics control shale oil movability directly. Movable oil saturation has a positive relationship with pore volume for radius > 2 μm, as larger pores often have higher movable oil saturation, indicating that movable oil is present in relatively larger pores. The main reasons for this are as follows. The relatively smaller pores often have oil-wetting properties because of organic matter, which has an unfavorable effect on the flow of oil, while the relatively larger pores are often wetted by water, which is helpful to shale oil movability. The rich surface provided by the relatively smaller pores is beneficial to the adsorption of immovable oil. Meanwhile, the relatively larger pores create significant pore volume for movable oil. Moreover, the larger pores often have good pore connectivity. Pores and fractures are interconnected to form a complex fracture network, which provides a good permeability channel for shale oil flow. The smaller pores are mostly distributed separately;thus, they are not conducive to the flow of shale oil. The mineral composition and fabric macroscopically affect the movability of shale oil. Calcite plays an active role in shale oil movability by increasing the brittleness of shale and is more likely to form micro-cracks under the same stress background. Clay does not utilize shale oil flow because of its large specific surface area and its block effect. The bedding structure increases the large-scale storage space and improves the connectivity of pores at different scales, which is conducive to the movability of shale oil.  相似文献   
2.
Cu and Fe skarns are the world’s most abundant and largest skarn type deposits, especially in China, and Au-rich skarn deposits have received much attention in the past two decades and yet there are few papers focused on schematic mineral deposit models of Cu–Fe–Au skarn systems. Three types of Au-rich deposits are recognized in the Edongnan region, Middle–Lower Yangtze River metallogenic belt: ~140 Ma Cu–Au and Au–Cu skarn deposits and distal Au–Tl deposits; 137–148 Ma Cu–Fe; and 130–133 Ma Fe skarn deposits. The Cu–Fe skarn deposits have a greater contribution of mantle components than the Fe skarn deposits, and the hydrothermal fluids responsible for formation of the Fe skarn deposits involved a greater contribution from evaporitic sedimentary rocks compared to Cu–Fe skarn deposits. The carbonate-hosted Au–Tl deposits in the Edongnan region are interpreted as distal products of Cu–Au skarn mineralization. A new schematic mineral deposit model of the Cu–Fe–Au skarn system is proposed to illustrate the relationship between the Cu–Fe–Au skarn mineralization, the evaporitic sedimentary rocks, and distal Au–Tl deposits. This model has important implications for the exploration for carbonate–hosted Au–Tl deposits in the more distal parts of Cu–Au skarn systems, and Fe skarn deposits with the occurrence of gypsum-bearing host sedimentary rocks in the MLYRB, and possibly elsewhere.  相似文献   
3.
全球多地蛇绿岩型地幔橄榄岩和铬铁矿中发现微粒金刚石,并在中国西藏南部和俄罗斯乌拉尔北部的蛇绿岩铬铁矿中发现原位产出的金刚石,认为是地球上金刚石的一种新的产出类型,不同于金伯利岩型金刚石和超高压变质型金刚石。它们与呈斯石英假象的柯石英、高压相的铬铁矿和青松矿等高压矿物以及碳硅石和单质矿物等强还原矿物伴生,指示蛇绿岩中的这些矿物组合形成于深度150~300 km或者更深的地幔。金刚石具有很轻的C同位素组成(δ13C-18‰~-28‰),并出现多种含Mn矿物和壳源成分包裹体。研究认为它们曾是早期深俯冲的地壳物质,达到>300 km深部地幔或地幔过渡带后,经历了熔融并产生新的流体,后者在上升过程中结晶成新的超高压、强还原矿物组合,通过地幔对流或地幔柱作用被带回到浅部地幔,由此建立了一个俯冲物质深地幔再循环的新模式。蛇绿岩型地幔橄榄岩和铬铁矿中发现金刚石等深部矿物,质疑了蛇绿岩铬铁矿形成于浅部地幔的已有认识,引发了一系列新的科学问题,提出了新的研究方向。   相似文献   
4.
5.
Based on the principle formula for the four-component strainmeters, we can directly obtain the specific plane strain, shear strain and azimuthal angle of the principal strain, and the maximum and minimum principal strains calculated afterwards are the indirect result. The problems of practicality of the sensitivity coefficients A and B of plane strain and shear strain are then discussed. Based on this idea, we analyzed the observation data of several four-component borehole strainmeters near the epicenter of the Yiliang MS5.7 earthquake in 2012 and the Ludian MS6.5 earthquake in 2014 in the Zhaotong area, Yunnan Province. The results show that the analysis based on the perspective of plane strain and shear strain has an obviously better effect than that based on the component readings, and can directly peel off the respective abnormality of the plane strain and shear strain. In addition, the correlation coefficient curves between measured data of two plane strains show significant anomalies which often occur several days before and during the earthquake.  相似文献   
6.
In the current state of geomagnetic instrument testing, some aspects of geomagnetic instrument performance are difficult to test in the laboratory. If laboratory test results are inadequate, the instrument will have multiple problems while operating in the field, where a geomagnetic instrumentation test platform with a stable natural magnetic field is critical. Here, the magnetic field feedback circuit for geomagnetic field compensation control is studied in detail. That is, the magnetic field measured by the feedback magnetic sensor and the required working magnetic field are compared as input to the system, and the electric signal is transmitted to the feedback coil through an analog circuit to form a closed loop control, which provides compensation to control the magnetic field. Compared with the existing magnetic shielding method, the analog control circuit can achieve the realization of any working magnetic field, and it is not limited to a null magnetic field. The experimental result shows that the system compensates the earth''s magnetic field of 10,000nT with an average error of 10.6nT and average compensation error of 0.106%, providing a high compensation accuracy. The system also shows high sensitivity and excellent stability. The feedback circuit has achieved effective compensation control for the earth''s magnetic field.  相似文献   
7.
8.
9.
丁青蛇绿岩位于班公湖-怒江缝合带东段,是该缝合带出露面积最大的蛇绿岩。为查明岩体成因,在丁青东岩体中实施了一口165.19m的钻孔。除最顶部有约0.5m厚的第四系残坡积物外,其余均为地幔橄榄岩。结合显微镜鉴定将岩心划分出17个岩性单元层,岩性主要以方辉橄榄岩为主,夹少量纯橄岩和含铬铁矿纯橄岩。地幔橄榄岩中橄榄石的Fo变化于88.79~93.73,铬尖晶石的Cr#变化于44.33~81.66,揭示丁青地幔橄榄岩可能经历过约20%~40%的中高度部分熔融作用;全岩地球化学分析表明其具有富镁(MgO=45.98%~49.45%)、贫铝(Al2O3=0.19%~1.37%)和贫钙(CaO=0.28%~0.70%)的特点,属于熔融程度较高的地幔残余物质。岩石具有明显不同于阿尔卑斯蛇绿岩的轻稀土元素富集特征,指示区内地幔橄榄岩先经历了较强程度的部分熔融,后经历了俯冲消减过程中的流体交代。利用地幔橄榄岩中的铬尖晶石成分计算母熔体Al2O3含量对应的FeO/MgO值,与不同构造环境原始岩浆成分相比较,发现丁青地幔橄榄岩母熔体大多处于玻安岩中。纯橄岩氧逸度估算FMQ=-3.05~-0.71,方辉橄榄岩氧逸度FMQ=-3.89~+1.47,显示丁青地幔橄榄岩有俯冲作用的参与。通过丁青钻孔岩心的研究,提出丁青东岩体可能形成于俯冲带之上的弧前环境这一观点。  相似文献   
10.
Due to its structure,rock and mineral composition,fluid and other factors,the granite Buried Hill Reservoir is highly heterogeneous with a complex longitudinal structure and a reservoir space made up of a combination of dissolution pores and fractures.This paper is based on current understanding of tectonic evolution in the northern part of the South China Sea,in conjunction with the seismic phase characteristics.It is determined that the meshed fault system was formed by three stages of movement-tectonic compression orogeny during the Indochinese epoch,strike-slip compression-tension during the Yanshanian Period,early fracture extension activation during the Himalayan-which controlled the distribution of the Buried Hill Reservoir.Drilling revealed two types of buried hills,faulted anticline and fault horst,their longitudinal structure and the reservoir space type being significantly different.The mineral composition,reservoir space and diagenetic characteristics of the reservoir rocks and minerals were analyzed by lithogeochemistry,micro section and logging etc.,it thus being determined that the Mesozoic rocks of the Songnan Low Uplift in the Qiongdongnan Basin are mainly composed of syenogranite,granodiorite,monzogranite,which is the material basis for the development of the Buried Hill Reservoir.The content of felsic and other brittle minerals is more than 70%,making it easy for it to be transformed into fractures.At the same time,the weathering resistance of granodiorite and monzogranite is weaker than that of syenogranite,which is easily weathered and destroyed,forming a thick sand gravel weathering zone.With increasing depth of burial,weathering and dissolution gradually weaken,the deep acidic fluid improving the reservoir property of internal fractures and expanding the vertical distribution range of the reservoirs.The research results lay a foundation for the exploration of Buried Hill in the deep-water area of the Qiongdongnan Basin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号