首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
地球物理   2篇
地质学   1篇
海洋学   1篇
  2014年   1篇
  2012年   1篇
  2011年   1篇
  1995年   1篇
排序方式: 共有4条查询结果,搜索用时 109 毫秒
1
1.
Landslides induced by typhoon Morakot during its passage across Taiwan on 7–9 Aug 2009 claimed more than 700 lives and caused heavy economic loss. Unlike earthquake monitoring, precise locations of landslides could not be determined in near-real time because their seismic phases are difficult to identify. Here, we show that large, damaging landslide events are characterized seismically by a distinct waveform pattern of frequent intermixes of P and S waves over a time window of several tens of seconds. The predominant frequency band during these time windows ranges from 0.5 to 5?Hz. The high-frequency content is clearly deficient relative to that of local earthquakes by about one to two orders. We also demonstrate that large landslide events can be located and monitored with algorithms specifically designed for real-time seismic applications. This near-real-time monitoring capability would be particularly useful for emergency responders and government organizations to coordinate effective relief-and-rescue operations.  相似文献   
2.
A new prototype system for earthquake early warning in Taiwan   总被引:1,自引:0,他引:1  
A new prototype earthquake early warning (EEW) system is being developed and tested using a real-time seismographic network currently in operation in Taiwan. This system is based on the Earthworm environment which carries out integrated analysis of real-time broadband, strong-motion and short-period signals. The peak amplitude of displacement in the three seconds after the P arrival, dubbed Pd, is used for the magnitude determination. Incoming signals are processed in real time. When a large earthquake occurs, P-wave arrival times and Pd will be estimated for location and magnitude determinations for EEW purpose. In a test of 54 felt earthquakes, this system can report earthquake information in 18.8±4.1 s after the earthquake occurrence with an average difference in epicenter locations of 6.3±5.7 km, and an average difference in depths of 7.9±6.6 km from catalogues. The magnitudes approach a 1:1 relationship to the reported magnitudes with a standard deviation of 0.51. Therefore, this system can provide early warning before the arrival of S-wave for metropolitan areas located 70 km away from the epicenter. This new system is still under development and being improved, with the hope of replacing the current operational EEW system in the future.  相似文献   
3.
In order to improve the locating capability for offshore earthquakes and tsunamis monitored off northeastern Taiwan, a cable-based ocean bottom seismographic observatory named “Marine Cable Hosted Observatory” (MACHO) was constructed and began operation at the end of 2011. The installed instruments of the observatory include a broadband seismometer, a strong-motion seismometer and a pressure gauge. In addition, various scientific instruments could be deployed for other purposes as well. At present, the seismic data are transmitted in real-time via a fiber cable, and integrated into the current inland seismographic network in Taiwan. The ocean bottom station has contributed to provide high quality seismic data already. According to observations from January 2012 to June 2013, there were a total of 15,168 earthquakes recorded by the system. By using the data from the ocean bottom station, the number of relocated earthquakes with an azimuth gap less than 180 degrees substantially increase about 34 %. Meanwhile, the root–mean–square of the time residual, the error in epicenter, and the error in depth of the earthquake locations decrease. Therefore, the implementation of MACHO has the advantage of extending the coverage of existing the Taiwan seismic network to the offshore, providing more accurate and real-time seismic data for offshore earthquakes monitoring. The results show that MACHO is crucial and necessary for monitoring seismic activities in northeastern Taiwan.  相似文献   
4.
The strong ground motion observation network began to operate in the Taipei Basin area as part of the Taiwan Strong Motion Instrumentation Program (TSMIP). It is operated by the Seismological Observation Centre of the Central Weather Bureau. Forty-three free-field accelerometers have been installed in the Taipei Basin, and several earthquakes have been recorded by this network since its installation. Three events with magnitudes of 5–7, 5–4 and 6–2 that triggered more than ten stations are used here to study the characteristics of the basin effects on ground motions both in the time and frequency domains. From this study, it is clear that vibrations of different frequencies have different amplifications in the Taipei Basin. In fact, the frequency responses show the variation can even be up to about 7 times. The horizontal peak ground acceleration (PGA) and spectral ratio contours in the low-frequency band are closely correlated with the geological structure in the Taipei Basin. The analysis of the response spectra also shows this correlation phenomenon and the relation between the damage from an earthquake and the basin effects.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号