首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   196篇
  免费   16篇
  国内免费   11篇
测绘学   1篇
大气科学   96篇
地球物理   47篇
地质学   44篇
海洋学   5篇
天文学   23篇
自然地理   7篇
  2023年   2篇
  2022年   6篇
  2021年   4篇
  2019年   4篇
  2018年   10篇
  2017年   9篇
  2016年   12篇
  2015年   6篇
  2014年   21篇
  2013年   8篇
  2012年   12篇
  2011年   8篇
  2010年   16篇
  2009年   12篇
  2008年   14篇
  2007年   11篇
  2006年   15篇
  2005年   12篇
  2004年   4篇
  2003年   12篇
  2002年   4篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
  1984年   2篇
  1976年   1篇
  1968年   1篇
排序方式: 共有223条查询结果,搜索用时 17 毫秒
1.
The island of Ischia, Gulf of Naples, Italy, like many other volcanic islands is affected by mass failures, that are mainly related to secondary volcanic processes such as slope steepening and seismic shaking. The block resurgence of its main relief, Mount Epomeo, has been recognised to contribute cyclically to mass instability and cause landslides, that occasionally may reach the sea and start tsunamis. In this work we explore the consequences of the Ischia Debris Avalanche (IDA), a flank collapse that occurred in historical times, and involved the whole Mount Epomeo edifice including its submarine portion, and that may have caused gigantic sea waves affecting all the coasts of Ischia and of the Gulf of Naples. The IDA and the generated tsunami have been taken as the worst-case scenario for the occurrence of a new tsunami in the area. They have been simulated through numerical codes developed and maintained by the University of Bologna. The simulation shows that the IDA-induced tsunami attacks severely all the coasts of the Gulf of Naples with the highest waves obtained for the island of Ischia, the island of Capri and the peninsula of Sorrento. The propagation pattern of the IDA tsunami can be used to get hints on the impact that such an event may have had on early populations habiting Gulf of Naples, but also to get clues on the area that could be most severely hit by a tsunami generated by a smaller-scale landslide that may occur in the same source zone.  相似文献   
2.
The response of the San Pietro monumental bell-tower located in Perugia, Italy, to the 2016 Central Italy seismic sequence is investigated, taking advantage of the availability of field data recorded by a vibration-based SHM system installed in December 2014 to detect earthquake-induced damages. The tower is located about 85 km in the NW direction from the epicenter of the first major shock of the sequence, the Accumoli Mw6.0 earthquake of August 24th, resulting in a small local PGA of about 30 cm/s2, whereby near-field PGA was measured as 915.97 cm/s2 (E–W component) and 445.59 cm/s2 (N–S component). Similar PGA values also characterized the two other major shocks of the sequence (Ussita Mw5.9 and Norcia Mw6.5 earthquakes of October 26th and 30th, respectively). Despite the relatively low intensity of such earthquakes in Perugia, the analysis of long-term monitoring data clearly highlights that small permanent changes in the structural behavior of the bell-tower have occurred after the earthquakes, with decreases in all identified natural frequencies. Such natural frequency decays are fully consistent with what predicted by non-linear finite element simulations and, in particular, with the development of microcracks at the base of the columns of the belfry. Microcracks in these regions, and in the rest of tower, are however hardly distinguishable from pre-existing ones and from the physiological cracking of a masonry structure, what validates the effectiveness of the SHM system in detecting earthquake-induced damage at a stage where this is not yet detectable by visual inspections.  相似文献   
3.
4.
Integrated hydrological models are usually calibrated against observations of river discharge and piezometric head in groundwater aquifers. Calibration of such models against spatially distributed observations of river water level can potentially improve their reliability and predictive skill. However, traditional river gauging stations are normally spaced too far apart to capture spatial patterns in the water surface, whereas spaceborne observations have limited spatial and temporal resolution. Unmanned aerial vehicles can retrieve river water level measurements, providing (a) high spatial resolution; (b) spatially continuous profiles along or across the water body, and (c) flexible timing of sampling. A semisynthetic study was conducted to analyse the value of the new unmanned aerial vehicle‐borne datatype for improving hydrological models, in particular estimates of groundwater–surface water (GW–SW) interaction. Mølleåen River (Denmark) and its catchment were simulated using an integrated hydrological model (MIKE 11–MIKE SHE). Calibration against distributed surface water levels using the Differential Evolution Adaptive Metropolis algorithm demonstrated a significant improvement in estimating spatial patterns and time series of GW–SW interaction. After water level calibration, the sharpness of the estimates of GW–SW time series improves by ~50% and root mean square error decreases by ~75% compared with those of a model calibrated against discharge only.  相似文献   
5.
We analyze a mini ensemble of regional climate projections over the CORDEX Africa domain carried out with RegCM4 model as part of the Phase I CREMA experiment (Giorgi 2013). RegCM4 is driven by the HadGEM2-ES and MPI-ESM global models for the RCP8.5 and RCP4.5 greenhouse gas and aerosol concentration scenarios. The focus of the analysis is on seasonal and intraseasonal monsoon characteristics. We find two prominent change signals. Over West Africa and the Sahel MPI produces a forward shift in the monsoon season in line with previous findings, and this shift is also simulated by the RegCM4. Furthermore, the regional model produces a widespread decrease of monsoon precipitation (when driven by both MPI and HadGEM) associated with decreased easterly wave activity in the 6–9 days regime and with soil moisture-precipitation interactions. South of the equator we find an extension of the dry season with delayed onset and anticipated recession of the monsoon and a narrowing and strengthening of the ITCZ precipitation band. This signal is consistent in all global and regional model projections, although with different spatial detail. We plan to enlarge this mini-ensemble as a further contribution to the CORDEX project to better assess the robustness of the signals found in this paper.  相似文献   
6.
We analyze changes of four extreme hydroclimatic indices in the RCP8.5 projections of the Phase I CREMA experiment, which includes 21st century projections over 5 CORDEX domains (Africa, Central America, South America, South Asia, Mediterranean) with the ICTP regional model RegCM4 driven by three CMIP5 global models. The indices are: Heat Wave Day Index (HWD), Maximum Consecutive Dry Day index (CDD), fraction of precipitation above the 95th intensity percentile (R95) and Hydroclimatic Intensity index (HY-INT). Comparison with coarse (GPCP) and high (TRMM) resolution daily precipitation data for the present day conditions shows that the precipitation intensity distributions from the GCMs are close to the GPCP data, while the RegCM4 ones are closer to TRMM, illustrating the added value of the increased resolution of the regional model. All global and regional model simulations project predominant increases in HWD, CDD, R95 and HY-INT, implying a regime shift towards more intense, less frequent rain events and increasing risk of heat wave, drought and flood with global warming. However, the magnitudes of the changes are generally larger in the global than the regional models, likely because of the relatively low “climate sensitivity” of the RegCM4, especially when using the CLM land surface scheme. In addition, pronounced regional differences in the change signals are found. The data from these simulations are available for use in impact assessment studies.  相似文献   
7.
This study investigates the performance of two planetary boundary layer (PBL) parameterisations in the regional climate model RegCM4.2 with specific focus on the recently implemented prognostic turbulent kinetic energy parameterisation scheme: the University of Washington (UW) scheme. When compared with the default Holtslag scheme, the UW scheme, in the 10-year experiments over the European domain, shows a substantial cooling. It reduces winter warm bias over the north-eastern Europe by 2 °C and reduces summer warm bias over central Europe by 3 °C. A part of the detected cooling is ascribed to a general reduction in lower tropospheric eddy heat diffusivity with the UW scheme. While differences in temperature tendency due to PBL schemes are mostly localized to the lower troposphere, the schemes show a much higher diversity in how vertical turbulent mixing of the water vapour mixing ratio is governed. Differences in the water vapour mixing ratio tendency due to the PBL scheme are present almost throughout the troposphere. However, they alone cannot explain the overall water vapour mixing ratio profiles, suggesting strong interaction between the PBL and other model parameterisations. An additional 18-member ensemble with the UW scheme is made, where two formulations of the master turbulent length scale in unstable conditions are tested and unconstrained parameters associated with (a) the evaporative enhancement of the cloud-top entrainment and (b) the formulation of the master turbulent length scale in stable conditions are systematically perturbed. These experiments suggest that the master turbulent length scale in the UW scheme could be further refined in the current implementation in the RegCM model. It was also found that the UW scheme is less sensitive to the variations of the other two selected unconstrained parameters, supporting the choice of these parameters in the default formulation of the UW scheme.  相似文献   
8.
The skill of a regional climate model (RegCM4) in capturing the mean patterns, interannual variability and extreme statistics of daily-scale temperature and precipitation events over Mexico is assessed through a comparison of observations and a 27-year long simulation driven by reanalyses of observations covering the Central America CORDEX domain. The analysis also includes the simulation of tropical cyclones. It is found that RegCM4 reproduces adequately the mean spatial patterns of seasonal precipitation and temperature, along with the associated interannual variability characteristics. The main model bias is an overestimation of precipitation in mountainous regions. The 5 and 95 percentiles of daily temperature, as well as the maximum dry spell length are realistically simulated. The simulated distribution of precipitation events as well as the 95 percentile of precipitation shows a wet bias in topographically complex regions. Based on a simple detection method, the model produces realistic tropical cyclone distributions even at its relatively coarse resolution (dx = 50 km), although the number of cyclone days is underestimated over the Pacific and somewhat overestimated over the Atlantic and Caribbean basins. Overall, it is assessed that the performance of RegCM4 over Mexico is of sufficient quality to study not only mean precipitation and temperature patterns, but also higher order climate statistics.  相似文献   
9.
National and international seismic codes and recommendations provide criteria for liquefaction exclusion based on a peak ground acceleration (PGA) threshold value. In this paper, after a brief review of the procedures and the values suggested in those documents, a database of liquefaction case histories was created, exploiting the background data used in the most relevant verification charts, currently employed in research and professional practice. This dataset was used to identify, on the basis of simple statistical analyses, a PGA threshold on the free ground surface below which liquefaction is unlikely to occur, regardless of the geological site conditions. The calculated value, which is on the order of 0.07–0.1 g, based on the model employed to fit the data, was analyzed in light of information collected during the 2012 Emilia seismic sequence in Italy, which produced many liquefaction events triggered by low acceleration values. The case history of the Emilia earthquake advises setting a PGA threshold for code and recommendations at the lower probability level of occurrence, in the order of 1 %.  相似文献   
10.
The prediction of the variability of the seismic ground motion in a given built-up area is considered an effective tool to plan appropriate urban development, to undertake actions on seismic risk mitigation and to understand the damage pattern caused by a strong-motion event. The procedures for studying the seismic response and the seismic microzonation of an urban area are well established; nevertheless, some controversial points still exists and are discussed here. In this paper, the selection of a reference input motion, the construction of a subsoil model and the seismic response analysis procedures are discussed in detail, based on the authors’ experience in two Italian case histories: the seismic microzonation of the city of Benevento, which was a predictive study, and the simulation of seismic response and damage distribution in the village of San Giuliano di Puglia, which was a retrospective analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号