首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   2篇
  国内免费   2篇
测绘学   1篇
大气科学   1篇
地球物理   9篇
地质学   13篇
天文学   6篇
自然地理   2篇
  2021年   1篇
  2019年   1篇
  2016年   2篇
  2013年   4篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2004年   4篇
  2001年   1篇
  2000年   1篇
  1995年   1篇
  1991年   1篇
  1979年   2篇
  1970年   2篇
排序方式: 共有32条查询结果,搜索用时 589 毫秒
1.
We describe and compare two methods of short-exposure, high-definition ground-based imaging of the planet Mercury. Two teams have recorded images of Mercury on different dates, from different locations, and with different observational and data reduction techniques. Both groups have achieved spatial resolutions of <250 km, and the same albedo features and contrast levels appear where the two datasets overlap (longitudes 270–360°). Dark albedo regions appear as mare and correlate well with smooth terrain radar signatures. Bright albedo features agree optically, but less well with radar data. Such confirmations of state-of-the-art optical techniques introduce a new era of ground-based exploration of Mercury's surface and its atmosphere. They offer opportunities for synergistic, cooperative observations before and during the upcoming Messenger and BepiColombo missions to Mercury.  相似文献   
2.
Along the upper reaches of the Gediz River in western Turkey, in the eastern part of the Aegean extensional province, the land surface has uplifted by 400 m since the Middle Pliocene. This uplift is revealed by progressive gorge incision, and its rate can be established because river terraces are capped by basalt flows that have been K–Ar and Ar–Ar dated. At present, the local uplift rate is 0.2 mm a−1. Uplift at this rate began around the start of the Middle Pleistocene, following a span of time when the uplift was much slower. This was itself preceded by an earlier uplift phase, apparently in the late Late Pliocene and early Early Pleistocene, when the uplift rate was comparable to the present. The resulting regional uplift history resembles what is observed in other regions and is analogously interpreted as the isostatic response to changing rates of surface processes linked to global environmental change. We suggest that this present phase of surface uplift, amounting so far to 150 m, is being caused by the nonsteady-state thermal and isostatic response of the crust to erosion, following an increase in erosion rates in the late Early Pleistocene, most likely as a result of the first large northern-hemisphere glaciation during oxygen isotope stage 22 at 870 ka. We suggest that the earlier uplift phase, responsible for the initial 250 m of uplift, resulted from a similar increase in erosion rates caused by the deterioration in local climate at 3.1 Ma. This uplift thus has no direct relationship to the crustal extension occurring in western Turkey, the rate and sense of which are thought not to have changed significantly on this time scale. Our results thus suggest that the present, often deeply incised, landscape of western Turkey has largely developed from the Middle Pleistocene onwards, for reasons not directly related to the active normal faulting that is also occurring. The local isostatic consequences of this active faulting are instead superimposed onto this “background” of regional surface uplift. Modelling of this surface uplift indicates that the effective viscosity of the lower continental crust beneath this part of Turkey is of the order of 1019 Pa s, similar to a recent estimate for beneath central Greece. The lower uplift rates observed in western Turkey, compared with central Greece, result from the longer typical distances of fluvial sediment transport, which cause weaker coupling by lower-crustal flow between offshore depocentres and eroding onshore regions that provide the sediment source.  相似文献   
3.
Proglacial suspended sediment transport was monitored at Haut Glacier d'Arolla, Switzerland, during the 1998 melt season to investigate the mechanisms of basal sediment evacuation by subglacial meltwater. Sub‐seasonal changes in relationships between suspended sediment transport and discharge demonstrate that the structure and hydraulics of the subglacial drainage system critically influenced how basal sediment was accessed and entrained. Under hydraulically inefficient subglacial drainage at the start of the melt season, sediment availability was generally high but sediment transport increased relatively slowly with discharge. Later in the melt season, sediment transport increased more rapidly with discharge as subglacial meltwater became confined to a spatially limited network of channels following removal of the seasonal snowpack from the ablation area. Flow capacity is inferred to have increased more rapidly with discharge within subglacial channels because rapid changes in discharge during highly peaked diurnal runoff cycles are likely to have been accommodated largely by changes in flow velocity. Basal sediment availability declined during channelization but increased throughout the remainder of the monitored period, resulting in very efficient basal sediment evacuation over the peak of the melt season. Increased basal sediment availability during the summer appears to have been linked to high diurnal water pressure variation within subglacial channels inferred from the strong increase in flow velocity with discharge. Basal sediment availability therefore appears likely to have been increased by (1) enhanced local ice‐bed separation leading to extra‐channel flow excursions and[sol ]or (2) the deformation of basal sediment towards low‐pressure channels due to a strong diurnally reversing hydraulic gradient between channels and areas of hydraulically less‐efficient drainage. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
4.
The effects of variable viscosity on flow dynamics within spherical shells are investigated using a finite-element thermal convection model, and preliminary result for cases with relatively low Rayleigh numbers and small viscosity contrasts are reported. These results demonstrate some general effects of viscosity variation on mantle dynamics, and, in particular, the generation of toroidal energy. Since lateral viscosity variations are necessary in the generation of toroidal motion in a thermally driven convective system, it is not surprising our results show that flows with greater viscosity contrasts produce greater amounts of toroidal energy. Our preliminary study further shows that solutions become more time-dependent as viscosity contrasts increase. Increasing the Rayleigh number is also found to increase the magnitude of toroidal energy. Internal heating, on the other hand, appears to lead to less toroidal energy compared wth bottom heating because it tends to produce a thermally more uniform interior and thus smaller viscosity variations.  相似文献   
5.
Abstract

A comparison is made between seven different numerical methods for calculating two-dimensional thermal convection in an infinite Prandtl number fluid. Among the seven methods are finite difference and finite element techniques that have been used to model thermal convection in the Earth's mantle. We evaluate the performance of each method using a suite of four benchmark problems, ranging from steady-state convection to intrinsically time-dependent convection with recurring thermal boundary layer instabilities. These results can be used to determine the accuracy of other computational methods, and to assist in the development of new ones.  相似文献   
6.
We present photoelectric photometry of λ And never before published, obtained between February 1982 and December 1990 at 29 different observatories. Then we combine it with all other photometry available to us (previously published, contained in the I.A.U. Commission 27 Archives, and obtained with the Vanderbilt 16-inch automatic telescope but not yet published), to yield a 14.8-year data base. Analysis reveals a long-term cycle in mean brightness, with a full range of 0m.15 and a period of 11.4 ± 0.4 years. Because most of our new photometry was concentrated in the 1983-84 observing season, we analyze that one well-defined light curve with a two-spot model. Spot A keeps a 0m.04 amplitude throughout four rotation cycles whereas the amplitude of spot B diminishes from 0m.09 down almost to 0m.03. The spot rotation periods were 55d.9 ± 0d.6 and 520d.8 ± 1d.0, respectively.  相似文献   
7.
8.
9.
During the few days centered about new Moon, the lunar surface is optically hidden from Earth-based observers. However, the Moon still offers an observable: an extended sodium tail. The lunar sodium tail is the escaping “hot” component of a coma-like exosphere of sodium generated by photon-stimulated desorption, solar wind sputtering and meteoroid impact. Neutral sodium atoms escaping lunar gravity experience solar radiation pressure that drives them into the anti-solar direction forming a comet-like tail. During new Moon time, the geometry of the Sun, Moon and Earth is such that the anti-sunward sodium flux is perturbed by the terrestrial gravitational field resulting in its focusing into a dense core that extends beyond the Earth. An all-sky camera situated at the El Leoncito Observatory (CASLEO) in Argentina has been successfully imaging this tail through a sodium filter at each lunation since April 2006. This paper reports on the results of the brightness of the lunar sodium tail spanning 31 lunations between April 2006 and September 2008. Brightness variability trends are compared with both sporadic and shower meteor activity, solar wind proton energy flux and solar near ultra violet (NUV) patterns for possible correlations. Results suggest minimal variability in the brightness of the observed lunar sodium tail, generally uncorrelated with any single source, yet consistent with a multi-year period of minimal solar activity and non-intense meteoric fluxes.  相似文献   
10.
A 10-cm aperture telescope equipped with coronagraphic capabilities, using occulting masks of various size and material, has been developed to obtain low-light-level, wide-angle (~7o FOV), narrow-band filtered images of sodium exospheres at Io, the Moon and Mercury. Here we describe new instrument capabilities and recent findings about the extraordinarily long tails of sodium gas discovered in the lunar and hermean exospheres. Spatial and temporal variability patterns captured in such images can be used to study changes in surface sputtering processes and radiation pressure acceleration effects in the inner solar system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号