首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
地球物理   1篇
地质学   1篇
自然地理   4篇
  2006年   1篇
  2004年   2篇
  2001年   1篇
  1999年   1篇
  1997年   1篇
排序方式: 共有6条查询结果,搜索用时 10 毫秒
1
1.
We present the results of a multidisciplinary study of the Ms = 6.2, 1995, June 15, Aigion earthquake (Gulf of Corinth, Greece). In order to constrain the rupture geometry, we used all available data from seismology (local, regional and teleseismic records of the mainshock and of aftershocks), geodesy (GPS and SAR interferometry), and tectonics. Part of these data were obtained during a postseismic field study consisting of the surveying of 24 GPS points, the temporary installation of 20 digital seismometers, and a detailed field investigation for surface fault break. The Aigion fault was the only fault onland which showed detectable breaks (< 4 cm). We relocated the mainshock hypocenter at 10 km in depth, 38 ° 21.7 N, 22 ° 12.0 E, about 15 km NNE to the damaged city of Aigion. The modeling of teleseismic P and SH waves provides a seismic moment Mo = 3.4 1018 N.m, a well constrained focal mechanism (strike 277 °, dip 33 °, rake – 77°), at a centroidal depth of 7.2 km, consistent with the NEIC and the revised Harvard determinations. It thus involved almost pure normal faulting in agreement with the tectonics of the Gulf. The horizontal GPS displacements corrected for the opening of the gulf (1.5 cm/year) show a well-resolved 7 cm northward motion above the hypocenter, which eliminates the possibility of a steep, south-dipping fault plane. Fitting the S-wave polarization at SERG, 10 km from the epicenter, with a 33° northward dipping plane implies a hypocentral depth greater than 10 km. The north dipping fault plane provides a poor fit to the GPS data at the southern points when a homogeneous elastic half-space is considered: the best fit geodetic model is obtained for a fault shallower by 2 km, assuming the same dip. We show with a two-dimensional model that this depth difference is probably due to the distorting effect of the shallow, low-rigidity sediments of the gulf and of its edges. The best-fit fault model, with dimensions 9 km E–W and 15 km along dip, and a 0.87 m uniform slip, fits InSAR data covering the time of the earthquake. The fault is located about 10 km east-northeast to the Aigion fault, whose surface breaks thus appears as secondary features. The rupture lasted 4 to 5 s, propagating southward and upward on a fault probably outcropping offshore, near the southern edge of the gulf. In the shallowest 4 km, the slip – if any – has not exceeded about 30 cm. This geometry implies a large directivity effect in Aigion, in agreement with the accelerogram aig which shows a short duration (2 s) and a large amplitude (0.5 g) of the direct S acceleration. This unusual low-angle normal faulting may have been favoured by a low-friction, high pore pressure fault zone, or by a rotation of the stress directions due to the possible dip towards the south of the brittle-ductile transition zone. This fault cannot be responsible for the long term topography of the rift, which is controlled by larger normal faults with larger dip angles, implying either a seldom, or a more recently started activity of such low angle faults in the central part of the rift.  相似文献   
2.
3.
4.
5.
The Chi-Chi 1999 earthquake ruptured the out-of-sequence Chelungpu Thrust Fault (CTF) in the fold-and-thrust belt in Western Central Taiwan. An important feature of this rupture is that the calculated slip increases approximately linearly in the SE–NW convergence plate direction from very little at its deeper edge to a maximum near the surface. We propose here a new explanation for this co-seismic slip distribution based on the study of both stress and displacement over the long-term as well as over a seismic cycle. Over the last 0.5 My, the convergence rate in the mountain front belt is accommodated by the frontal Changhua Fault (Ch.F), the CTF and the Shuangtung Fault (Sh.F). Based on previously published balanced cross sections, we estimate that the long-term slip of the Ch.F and of the CTF accommodate 5–30% and 30–55% of the convergence rate, respectively. This long-term partitioning of the convergence rate and the modeling of inter-seismic and post-seismic displacements suggest that the peculiar linear co-seismic slip distribution is accounted for by a combination of the effect of the obliquity of the CTF to the direction of inter-seismic loading, and of increasing aseismic creep on the deeper part of the Ch.F and CTF. Many previous interpretations of this slip distribution have been done including the effects of material properties, lubrication, site effect, fault geometry and dynamic waves. The importance of these processes with respect to the effects proposed here is still unknown. Taking into account the dip angle of the CTF, asperity dynamic models have been proposed to explain the general features of co-seismic slip distribution. In particular, recent works show the importance of heterogeneous spatial distribution of stress prior to the Chi-Chi earthquake. Our analysis of seismicity shows that previous large historic earthquakes cannot explain the amplitude of this heterogeneity. Based on our approach, we rather think that the high stress in the northern part of the CTF proposed by Oglesby and Day [Oglesby, D.D., Day, S.M., 2001. Fault geometry and the dynamics of the 1999 Chi-Chi (Taiwan) earthquake. Bull. Seismol. Soc. Am. 91, 1099–1111] reflects the latitudinal variation of inter-seismic coupling due to the obliquity of the CTF.  相似文献   
6.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号