首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   1篇
  国内免费   7篇
测绘学   1篇
大气科学   2篇
地球物理   10篇
地质学   75篇
海洋学   1篇
天文学   2篇
自然地理   1篇
  2018年   2篇
  2017年   3篇
  2016年   4篇
  2014年   1篇
  2013年   9篇
  2012年   2篇
  2011年   7篇
  2010年   5篇
  2009年   3篇
  2008年   4篇
  2007年   4篇
  2005年   3篇
  2004年   6篇
  2003年   4篇
  2002年   1篇
  2001年   4篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1995年   1篇
  1990年   1篇
  1987年   1篇
  1986年   3篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1976年   2篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有92条查询结果,搜索用时 31 毫秒
1.
The Central Asia Orogenic Belt is the world's largest Phanerozoic accretionary orogen. The Altai orogen was key to understand the orogeny. Voluminous intrusions occur in the Chinese Altai orogen.  相似文献   
2.
Most of previous models suggest that the Central Asia Orogenic Belt grew southward in the Phanerozoic. However, in the Bayanhongor region in west-central Mongolia, volcanic arc, accretionary prism, ophiolite, and passive margin complexes accreted northeastward away from the Baydrag micro-continent, and hence the region constitutes the southwestern part of a crustal-scale syntaxis close to the west. The syntaxis should be original, because presumably reorientation due to strike-slip faulting can be ignored. It is reconfirmed that the Baydrag eventually collided with another micro-continent (the Hangai) to the northeast. A thick sedimentary basin developed along the southern passive margin of the Hangai micro-continent. This region is also characterized by an exhumed metamorphosed accretionary complex and a passive margin complex, which are both bounded by detachment faults as well as basal reverse faults which formed simultaneously as extrusion wedges. This part of the Central Asia Orogenic Belt lacks exhumed crystalline rocks as observed in the Himalayas and other major collisional orogenic belts. In addition, we identified two phases of deformation, which occurred at each phase of zonal accretion as D1 through Cambrian and Devonian, and a synchronous phase of final micro-continental collision of Devonian as D2. The pre-collisional ocean was wide enough to be characterized by a mid-ocean ridge and ocean islands. Two different structural trends of D1 and D2 are observed in accretionary complexes formed to the southwest of the late Cambrian mid-ocean ridge. That is, the relative plate motions on both sides of the mid-ocean ridge were different. Accretionary complexes and passive margin sediments to the northeast of the mid-ocean ridge also experienced two periods of deformation but show the same structural trend. Unmetamorphosed cover sediments on the accretionary prism and on the Hangai micro-continent experienced only the D2 event due to micro-continental collision. These unmetamorphosed sediments form the hanging walls of the detachment faults. Moreover, they were at least partly derived from an active volcanic arc formed at the margin of the Baydrag micro-continent.  相似文献   
3.
Minor granulites (believed to be pre-Triassic), surrounded by abundant amphibolite-facies orthogneiss, occur in the same region as the well-documented Triassic high- and ultrahigh-pressure (HP and UHP) eclogites in the Dabie–Sulu terranes, eastern China. Moreover, some eclogites and garnet clinopyroxenites have been metamorphosed at granulite- to amphibolite-facies conditions during exhumation. Granulitized HP eclogites/garnet clinopyroxenites at Huangweihe and Baizhangyan record estimated eclogite-facies metamorphic conditions of 775–805 °C and ≥15 kbar, followed by granulite- to amphibolite-facies overprint of ca. 750–800 °C and 6–11 kbar. The presence of (Na, Ca, Ba, Sr)-feldspars in garnet and omphacite corresponds to amphibolite-facies conditions. Metamorphic mineral assemblages and PT estimates for felsic granulite at Huangtuling and mafic granulite at Huilanshan indicate peak conditions of 850 °C and 12 kbar for the granulite-facies metamorphism and 700 °C and 6 kbar for amphibolite-facies retrograde metamorphism. Cordierite–orthopyroxene and ferropargasite–plagioclase coronas and symplectites around garnet record a strong, rapid decompression, possibly contemporaneous with the uplift of neighbouring HP/UHP eclogites.

Carbonic fluid (CO2-rich) inclusions are predominant in both HP granulites and granulitized HP/UHP eclogites/garnet clinopyroxenites. They have low densities, having been reset during decompression. Minor amounts of CH4 and/or N2 as well as carbonate are present. In the granulitized HP/UHP eclogites/garnet clinopyroxenites, early fluids are high-salinity brines with minor N2, whereas low-salinity fluids formed during retrogression. Syn-granulite-facies carbonic fluid inclusions occur either in quartz rods in clinopyroxene (granulitized HP garnet clinopyxeronite) or in quartz blebs in garnet and quartz matrices (UHP eclogite). For HP granulites, a limited number of primary CO2 and mixed H2O–CO2(liquid) inclusions have also been observed in undeformed quartz inclusions within garnet, orthopyroxene, and plagioclase which contain abundant, low-density CO2±carbonate inclusions. It is suggested that the primary fluid in the HP granulites was high-density CO2, mixed with a significant quantity of water. The water was consumed by retrograde metamorphic mineral reactions and may also have been responsible for metasomatic reactions (“giant myrmekites”) occurring at quartz–feldspar boundaries. Compared with the UHP eclogites in this region, the granulites were exhumed in the presence of massive, externally derived carbonic fluids and subsequently limited low-salinity aqueous fluids, probably derived from the surrounding gneisses.  相似文献   

4.
New pseudosection modelling was applied to better constrain the P–T conditions and evolution of glaucophane‐bearing rocks in the Tamayen block of the Yuli belt, recognized as the world's youngest known blueschist complex. Based on the predominant clinoamphibole, textural relationships, and mineral compositions, these glaucophane‐bearing high‐P rocks can be divided into four types. We focused on the three containing garnet. The chief phase assemblages are (in decreasing mode): amphibole + quartz + epidote + garnet + chlorite + rutile/titanite (Type‐I), phengite + amphibole + quartz + garnet + chlorite + epidote + titanite + biotite + magnetite (Type‐II), and amphibole + quartz + albite + epidote + garnet + rutile + hematite + titanite (Type‐III). Amphibole exhibits compositional zoning from core to rim as follows: glaucophane → pargasitic amphibole → actinolite (Type‐I), barroisite → Mg‐katophorite/taramite → Fe‐glaucophane (Type‐II), glaucophane → winchite (Type‐III). Using petrographic data, mineral compositions and Perple_X modelling (pseudosections and superimposed isopleths), peak P–T conditions were determined as 13 ± 1 kbar and 550 ± 40 °C for Type‐I, 10.5 ± 0.5 kbar and 560 ± 30 °C for Type‐II (thermal peak) and 11 ± 1 kbar and 530 ± 30 °C for Type‐III. The calculations yield higher pressures and temperatures than previously thought; the difference is ~1–6 kbar and 50–200 °C. The three rock types record similar P–T retrograde paths with clockwise trajectories; all rocks followed trajectories with substantial pressure decrease under near‐isothermal conditions (Type‐I and Type‐III), with the probable exception of Type‐II where decompression followed colder geotherms. The P–T paths suggest a tectonic environment in which the rocks were exhumed from maximum depths of ~45 km within a subduction channel along a relative cold geothermal gradient of ~11–14 °C km?1.  相似文献   
5.
通过太行山南段三个中生代杂岩体(西戌、武安和洪山)的元素和同位素地球化学特征的研究。讨论其成因和地球动力学环境。结果表明,西戌和武安杂岩体主要由从二长辉长岩到二长岩的一系列岩石组成,其地球化学性质相似(高Mg^s,具微弱至正Eu异常的REE模式等)。西戊杂岩体的εNd(135Ma)=-12.3~-16.9,Isε=0.7056~0.7071,与武安杂岩体稍有不同。西戌杂岩体的(^206Pb/^204Pb)i=16.92~17.3,(^207Pb/^204Pb)i=15.32~15.42,(^208Pb/^201Pb)i=37.16~37.63,较武安杂岩体的略高。西戊-武安杂岩体都起源于EM1型富集地幔,但被下地壳物质不同程度混染。洪山杂岩体(正长岩-花岗岩)也来自EM1型富集地幔的部分熔融,但属于不同的岩浆事件,并仅受轻微的下地壳混染。太行山岩浆作用的发生可能与古太平洋板块的水平俯冲消减而形成的弧后伸展环境有关。  相似文献   
6.
7.
Eighteen silicic volcanic rocks of the Warrawoona Group and ten associated plutonic rocks from the Pilbara Block, Western Australia, have been chosen for geochemical and isotopic studies. Silicic volcanics of the UNSB (Upper member of North Star Basalt) are dated at 3.56—3.57
, by both the Rb-Sr and the Sm-Nd methods. The respective 1 (initial isotopic composition) values are 0.7005 ± 5 (Sr) and 0.50810 ± 39 (Nd). This age is consistent with the stratigraphic interpretation that the TalgaTalga Subgroup, in which the North Star Basalt occupies the lowermost position, is overlain by the Duffer Formation, whose age was earlier established at 3.45
by the zircon U-Pb method. The new Rb-Sr data on six silicic lava samples from the Duffer Formation yield an isochron of 3.23 ± 0.28 (2v). Though imprecise, this age agrees with the zircon age within error limits. Rb-Sr ages of 2.3–2.4.
obtained for the ‘Panorama’ rocks and the Wyman Formation do not correspond to their initial eruption ages. Chemical arguments suggest that these ages represent the time of metasomatism associated with the widespread thermal event in this region about 2.3–2.4
ago.Geochemically, most of these analyzed rocks (volcanic and plutonic) are of tonalite-trondhjemitegranodiorite (TTG) composition, a typical feature found in many other Archean terrains. They generally show fractionated REE patterns, except the Panorama Formation rocks. Furthermore, the Wyman Formation rhyolites and the post-tectonic adamellites show significant negative Eu anomalies, suggesting a similar mode of magma generation and a probable genetic link. Theoretical considerations suggest that most of these TTG rocks could have been generated by partial melting of amphibolitic or basaltic sources, followed by fractional crystallization.Although the Archean granitic gneisses often possess mantle-like Isr values, the trace element data indicate that they could not have been derived by direct melting of upper mantle materials. The immediate tectonic implication is that in any Archean terrain, the formation of Na-rich continental crust of TTG suite must be preceded by the presence of basaltic crust. The occurrence of this basaltic crust is a matter of controversy. Such crust might have been totally destroyed by repeated melting processes, or its remnants are now represented by some of the mafic-ultramafic enclaves within the tonalite-trondhjemite batholiths.  相似文献   
8.
A typical feature of the Precambrian complexes of the Kokshetau, Ishkeolmess, Erementau-Niyaz, and Aktau-Dzhungaria massifs of Northern and Central Kazakhstan is the presence of the end Mesoproterozoic-beginning of the Neoproterozoic quartzite-schist sequences in these sections. The lower and upper parts of these sequences are mostly composed of schists with interlayers of quartzites and marbles and of quartzitic sandstones, respectively. It is suggested that the quartzite-schist sequences represent the sub-platform cover of a large continental block and were formed in the regressive basin with widely abundant facies of submarine deltas and a littoral shoal. The presence of horizons and the lenses enriched in zircon-rutile heavy concentrate with the amount of accessory minerals of 10-70% characterizes the quartzite-schist sections of the Kokshetau and Erementau-Niyaz massifs. The U-Pb age of zircons from one such locality in the central part of the Erementau-Niyaz massif was analyzed by LA-ICP-MS. The Concordia ages of zircons are in the intervals 1041 ± 13-1519 ± 14, 1623 ± 14-1931 ± 14, and 2691 ± 14-2746 ± 14 Ma. One age was 2850 ± 14 Ma. The age distribution is characterized by clear peaks of 1.08, 1.20. 1.34, 1.46, 1.65, 1.89, and 2.70 Ga and weak peaks of 1.13 and 1.68 Ga. The age of the majority of zircons ranges from 1309 ± 14 to 1519 ± 14 Ma. Our data indicate that mostly Neoproterozoic rocks with a subordinate role of Paleoproterozoic and Neoarchean complexes served the feeding sources for the quartzite-schist sequence of the Erementau-Niyaz massif. The Mesoproterozoic and Paleoproterozoic events identified for the detrital zircons of the Erementau-Niyaz massif are completely manifested only in Laurentia. In the first approximation, these events coincide with the assembly and breakup of the Columbia/Nuna supercontinent (~1650–1580 and 1450–1380 Ma) and assembly of the Rodinia supercontinent (1300–900 Ma).  相似文献   
9.
Twenty granodioritic rocks and one amphibolitic enclave of the “basement” of the Suomussalmi-Kuhmo Archaean (2.65 Ga) greenstone belts (central-eastern Finland), have been chosen together with one greenstone sample for Rb-Sr and Sm-Nd geochronological and isotopic studies.The granitoïd rocks are subdivided into three groups: two generations of grey gneisses and a post-belt augen gneiss. The Rb-Sr ages of the first and second generation of grey gneisses are 2.86 ± 0.09 and 2.62 ± 0.07 Ga, respectively. These results are corroborated by Sm-Nd data. The post-belt augen gneiss gives an age of 2.51 ± 0.11 Ga. The results show that the two generations of grey gneisses, the greenstone belts and the post-greenstone augen gneiss, were developed over a period > 350 Ma. The two generations of grey gneisses show identical ISr values (0.7023 ± 8 and 0.7024 ± 6) which contrast with that of the augen gneiss (0.7049 ± 8). The low ISr and the near-chondritic ?TCHUR values indicate that the grey gneisses cannot derived from much older continental materials. Trace element studies suggest that these grey gneisses have had a multi-stage development. The augen gneiss with a moderately high ISr is likely to be derived from a granodiorite originated by partial melting of older sialic crust. The more probable parent rock seems to be the first generation grey gneisses. The ISr and average Rb/Sr values preclude the greenstone belt and the second generation of grey gneisses as the protolith.  相似文献   
10.
The Late Permian (260 Ma) Emeishan large igneous province of SW China contains numerous magmatic Fe–Ti oxide deposits. The Fe–Ti oxide deposits occur in the lower parts of evolved layered gabbroic intrusions which are spatially and temporally associated with A-type granitic rocks. The 260 Ma Panzhihua layered gabbroic intrusion hosts one of the largest magmatic Fe–Ti oxide deposits in China and is coeval with a peralkaline A-type granitic pluton. The granite has intruded the overlying Emeishan flood basalts and fed at least one dyke which erupted onto the surface producing columnar jointed trachytes. The presence of syenodiorite between the layered gabbro and granite is evidence for compositional evolution from mafic to intermediate to felsic rocks. The syenodiorites have intermediate to felsic composition with SiO2 = 61 to 65 wt.%, MgO = 0.27 to 0.6 wt.% and CaO = 1.0 to 2.5 wt.% as compared to the granite SiO2 = 65 to 72 wt.%, MgO = 0.1 to 0.4 wt.%, CaO = < 1.0 wt.%. Primitive-mantle-normalized incompatible element plots show corresponding reciprocal patterns between the mafic and felsic rocks. The chondrite-normalized REE patterns show Eu anomalies changing from > 1(Eu/Eu? = 1.1 to 2.6) in the gabbroic intrusion, to < 1 in the syenodiorite (Eu/Eu? = 0.75 to 0.83), granites and trachytes (Eu/Eu? = 0.55–0.87). Previously published εNd(T) values from clinopyroxenes (εNd(T) = + 1.1 to + 3.2) of the gabbroic intrusion match the whole-rock values of the syenodiorite (εNd(T) = + 2.1 to + 2.5), granite and trachyte (εNd(T) = + 2.2 to + 2.9), suggesting that all rock types originated from the same mantle source. MELTS and trace element modeling confirm that all rock types can be generated by fractional crystallization of high-Ti Emeishan basalt. The jump in SiO2 from the gabbro to the syenodiorite is attributed to the en masse crystallization of the Fe–Ti oxides. The geological and geochemical data indicate that fractional crystallization of a common parental magma produced the layered gabbroic intrusion and Fe–Ti oxide deposit, the syenodiorite, granites and trachyte of the Panzhihua region, which thus form a genetically related plutonic-hypabyssal-volcanic complex. Other granite–gabbro complexes in the region likely formed in a similar manner.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号