首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
地球物理   3篇
地质学   1篇
海洋学   1篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
  1980年   1篇
  1973年   1篇
排序方式: 共有5条查询结果,搜索用时 406 毫秒
1
1.
Anthropogenic radionuclides have reached the Hudson estuary as global fallout from nuclear weapons testing and through local releases from commercial nuclear reactors. Significant activities of238Pu and239,240Pu (fallout-derived),134Cs and60Co (reactor-released), and137Cs (derived from both sources), have accumulated in the sediments throughout the estuary, with the primary zone of accumulation near the downstream end of the system in New York harbor. The estuary appears to have trapped nearly all of the239,240Pu delivered as fallout, and consequently, ocean dumping of dredged harbor sediment is currently the primary means for the net transport of these nuclides to coastal waters. In contrast, only 10–30% of the137Cs,134Cs and60Co delivered to the estuary have been retained on the fine particles which accumulate at a rapid rate in the harbor.The primary factors which have governed the distribution of anthropogenic radionuclides in Hudson sediments are: (1) spread of fine particles labeled with both fallout and reactor nuclides throughout the axis of the estuary, (2) differences in timing of the peak fallout years (1962–1964) and years of maximum reactor releases (1971–1972), (3) large variations in sediment accumulation rates, ranging from a few millimeters per year or less to many tens of centimeters per year, (4) appreciable desorption of137Cs and134Cs from particles at higher salinities, and (5) possible enhanced desorption of60Co at higher salinities (relative to134Cs and137Cs) which may be associated with the release of reduced manganese from the harbor sediments.  相似文献   
2.
Isotopes of plutonium (Pu), cesium (Cs), and cobalt (Co) introduced into the Hudson River Estuary from fallout deposition, the erosion of fallout-contaminated surface soils, and nuclear reactor effluent (isotopes of Cs and Co only) have been measured in water column samples collected from 1975 to 1980 Isotopic measurements conducted independently by two research groups utilizing different sampling and analytical techniques have been summarized. The major conclusions drawn from the work are that for water samples collected by the two laboratories over similar time periods, the mean concentrations of nonfilterable239,240Pu (<0.45 μm) were identical at 0.13 fCi/l, mean concentrations of both137Cs and239,240Pu in suspended particulates were more divergent at 2,270±920 pCi/kg (±1 SD) and 1,430±430 pCi/kg for137Cs, and 19±8 pCi/kg and 12±4 pCi/kg for239,240Pu The behavior of239,240Pu and137Cs within the water column is shown to diverge within brackish waters Specifically, the magnitude of the137Cs distribution coefficient (K d ) can be expressed as an inverse power function of the chloride ion concentrations for chlorinities between 0.1 and 4 g Cl/l No difference in the239,240PuK d has been observed between fresh and brackish waters Based on the expected inventories of239,240Pu and137Cs within watershed soils, the current downstream transport of these radionuclides represents fractional mobilization rates on the order of 1–4 (×10−4) per year  相似文献   
3.
An estuarine fine-particle budget determined from radionuclide tracers   总被引:1,自引:0,他引:1  
The sedimentary distributions of radiocesium and plutonium have been used to determine patterns of fine-particle accumulation, estimate net sediment fluxes from different sources, and develop a fine-particle budget for the Hudson-Raritan estuary. It is proposed that the rates and patterns of fineparticle accumulation reflect a sediment surface in dynamic equilibrium with the wave and current regimes. Rates of accumulation in most estuarine areas appear to equal the rate to sea-level rise or land subsidence. Localized areas, which have not yet attained or are presently out of equilibrium, serve as fine particle traps.  相似文献   
4.
Analysis of water samples from the New York Bight area and Narragansett Bay reveals that a small fraction of the total Pu (probably Pu (III + IV) species) is continuously removed to the sediments at a rate similar to that of the particle-reactive isotope228Th. A more “soluble” Pu species appears to be released at times from the sediments to the water column in these nearshore regions. Sediments in shallow areas of the New York Bight south of Rhode Island and Narragansett Bay have high Pu inventories and relatively deep penetration of this element, although the net sediment accumulation rate is generally low (<0.03 g/cm2 yr). The high Pu inventories can be explained if both sediment resuspension and sediment mixing are assumed to be the major controlling factors for the effective transfer of Pu from the water column to the sediments. By simultaneous modelling of the depth distribution of three tracers which operate on vastly different time scales:234Th (half-life 24 days),210Pb (half-life 22 years) and239,240Pu (introduced into the environment during the past 30 years), bioturbation rates ranging from 4 to 32 cm2/yr in the surface mixed layer (5–10 cm thick) and from 0.3 to 2.5 cm2/yr in the layer below (up to 40 cm thick) and net sediment accumulation rates of approximately zero to 0.14 g/cm2 yr were calculated for these areas.  相似文献   
5.
The activity ratio of228Th/228Ra in the open surface ocean averages 0.21. This suggests that thorium is removed from surface water in about 0.7 yr. As plant matter is cycled within the surface sea on a similar time scale, the suggestion is made that highly reactive compounds are inadvertently removed by plants in their quest for the critical nutrients nitrate and phosphate. Combined with the coefficient for horizontal eddy diffusivity obtained from the distribution of228Ra in surface sea water this result provides a basis for the prediction of the distribution of “reactive” pollutants released to the surface sea from coastal areas.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号