首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   107篇
  免费   0篇
大气科学   3篇
地球物理   5篇
地质学   28篇
海洋学   9篇
天文学   60篇
自然地理   2篇
  2021年   1篇
  2017年   1篇
  2014年   1篇
  2013年   3篇
  2012年   3篇
  2011年   1篇
  2010年   1篇
  2009年   3篇
  2008年   4篇
  2007年   5篇
  2006年   4篇
  2005年   6篇
  2004年   10篇
  2003年   9篇
  2002年   6篇
  2001年   5篇
  2000年   3篇
  1999年   4篇
  1998年   7篇
  1996年   1篇
  1994年   3篇
  1993年   2篇
  1990年   1篇
  1989年   1篇
  1986年   2篇
  1984年   1篇
  1982年   5篇
  1980年   3篇
  1977年   1篇
  1976年   1篇
  1974年   4篇
  1973年   2篇
  1970年   2篇
  1968年   1篇
排序方式: 共有107条查询结果,搜索用时 514 毫秒
1.
2.
Scientific sea-floor dredging is currently used in marine geology primarily by the hard-rock community interested in the recovery of basement rock samples from the unsedimented deep ocean floor. The technique has generally been eclipsed by ocean drilling for recovery of sedimentary rocks, because of perceived uncertainties in the location of sampling and in the representativeness of recovered material. This contribution reviews dredging equipment currently in use by marine geological institutions and refers to pinger attachments that allow precise information on the behaviour of the dredge to be telemetered back to the ship. We argue that improvements in ship navigation and transponder navigation at the seafloor, when used in conjunction with surface and/or deeply towed sidescan and swathemapping surveys, now allow for considerably less uncertainty on the location of dredge sampling. Refined sorting criteria for dredge hauls are now also available. Recent comparisons of regional sample recovery by ocean drilling and by dredge sampling indicate that the dredge hauls can usefully supplement the drilling data in the construction of sedimentary and tectonic histories of seafloor areas.  相似文献   
3.
The Solomon Islands lie along the India-Pacific plates' margin and have recorded a history of deformation resulting from the interaction of these two plates. Various kinematic models have been proposed for the Solomons and these have involved a variety of plate tectonic processes. It is pointed out that almost without exception these models have been based on a provincial geological classification of the island group in which it is assumed that two of these provinces—Pacific and Central provinces—commenced their geological development in regions distant from one another. Invariably such models require that Santa Isabel represents part of a collision zone between these two provinces, though field evidence from Santa Isabel for such a collision has in the past been largely lacking.These various kinematic models are examined in the light of more recent field evidence, and a premise on which they have been based—initial separate development for two of the provinces—is questioned. Rather it is here suggested that the Central and Pacific provinces developed in roughly similar positions, one with the other as they occur today, and that they were at least in part separated from Oligocene time onward by a linear peridotite-gabbro ridge, Korighole-Florida high, which acted as a sediment barrier to much of the coarser clastic and volcanogenic sedimentation.The initial development of the Solomon Islands began in an oceanic environment with the extrusion of extensive submarine tholeiitic ‘flood basalts’ and intrusion of associated gabbroic and ultramafic rocks at depth, during the Late Mesozoic to Early Tertiary. This igneous phase occurred with the whole of the island group representing the western margin of the Ontong Java Plateau. Subsequent asymmetric development of the Solomons during the Eocene and Oligocene resulted in uplift, shearing, and the initiation of arc volcanism, plutonism, and arc-related sedimentation in the Central province to the west. In contrast, through much of the Tertiary the Pacific province to the east continued to receive dominantly pelagic sediments before undergoing uplift and renewed deformation in the Pliocene. The recognition that the ophiolite crust in the Solomon Islands represents an autochthonous entity, which has acted as basement to subsequent arc volcanism, has significant implications on geochemical studies of these islands now being undertaken.  相似文献   
4.
Scapolite at Mary Kathleen (North-Western Queensland) occurs in calcareous and non-calcareous metapelites, acid and basic metavolcanics and metadolerites. Graphical treatment of the relationship between scapolite composition (Me%) and the host rock oxide ratios CaO/Na2O and Al2O3/(CaO + Na2O) reveals the following points:
  1. The calcareous metapelites are also very sodic.
  2. Scapolite in calcareous metapelites is more marialitic than that in low-calcium equivalents.
  3. In graphs of Me% against CaO/Na2O and Al2O3/(CaO + Na2O) the metasediments and the metaigneous rocks show markedly different trends.
It is concluded that scapolite in the metasediments originated by isochemical metamorphism of shales and marls containing evaporitic halite. The local abundance of halite was the main control on the composition and distribution of the scapolite, but the relative abundance of CaO and Na2O was a modifying factor. In the metaigneous rocks scapolite formed metasomatically during regional metamorphism by the introduction of volatile-rich fluids derived from the adjacent evaporitic sediments. The relative availability of CO2 and Cl2 again appears to have been the primary control on scapolite composition and may in turn have been controlled by bulk rock composition.  相似文献   
5.
6.
We present low–medium resolution optical spectroscopy of the eclipsing AM Her system MN Hya (RX J0929–24). We determine the magnetic field strength at the primary accretion region of the white dwarf to be 42 MG from the spacing of cyclotron features visible during π ∼ 0.4–0.7. From spectra taken during the eclipse we find that the secondary has an M3–4 spectral type. Combined with the eclipse photometry of Sekiguchi, Nakada &38; Bassett and an estimate of the interstellar extinction we find a distance of ∼300–700 pc. We find unusual line variations at π ∼ 0.9: Hα is seen in absorption and emission. This is at the same point in the orbital phase at which a prominent absorption dip is seen in soft X-rays.  相似文献   
7.
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号